Cargando…

A deep learning method for predicting knee osteoarthritis radiographic progression from MRI

BACKGROUND: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs. METHODS: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (...

Descripción completa

Detalles Bibliográficos
Autores principales: Schiratti, Jean-Baptiste, Dubois, Rémy, Herent, Paul, Cahané, David, Dachary, Jocelyn, Clozel, Thomas, Wainrib, Gilles, Keime-Guibert, Florence, Lalande, Agnes, Pueyo, Maria, Guillier, Romain, Gabarroca, Christine, Moingeon, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521982/
https://www.ncbi.nlm.nih.gov/pubmed/34663440
http://dx.doi.org/10.1186/s13075-021-02634-4
Descripción
Sumario:BACKGROUND: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs. METHODS: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (OAI) database , we implemented a deep learning method to predict, from MR images and clinical variables including body mass index (BMI), further cartilage degradation measured by joint space narrowing at 12 months. RESULTS: Using COR IW TSE images, our classification model achieved a ROC AUC score of 65%. On a similar task, trained radiologists obtained a ROC AUC score of 58.7% highlighting the difficulty of the classification task. Additional analyses conducted in parallel to predict pain grade evaluated by the WOMAC pain index achieved a ROC AUC score of 72%. Attention maps provided evidence for distinct specific areas as being relevant in those two predictive models, including the medial joint space for JSN progression and the intra-articular space for pain prediction. CONCLUSIONS: This feasibility study demonstrates the interest of deep learning applied to OA, with a potential to support even trained radiologists in the challenging task of identifying patients with a high-risk of disease progression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-021-02634-4.