Cargando…

A deep learning method for predicting knee osteoarthritis radiographic progression from MRI

BACKGROUND: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs. METHODS: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (...

Descripción completa

Detalles Bibliográficos
Autores principales: Schiratti, Jean-Baptiste, Dubois, Rémy, Herent, Paul, Cahané, David, Dachary, Jocelyn, Clozel, Thomas, Wainrib, Gilles, Keime-Guibert, Florence, Lalande, Agnes, Pueyo, Maria, Guillier, Romain, Gabarroca, Christine, Moingeon, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521982/
https://www.ncbi.nlm.nih.gov/pubmed/34663440
http://dx.doi.org/10.1186/s13075-021-02634-4
_version_ 1784585001539469312
author Schiratti, Jean-Baptiste
Dubois, Rémy
Herent, Paul
Cahané, David
Dachary, Jocelyn
Clozel, Thomas
Wainrib, Gilles
Keime-Guibert, Florence
Lalande, Agnes
Pueyo, Maria
Guillier, Romain
Gabarroca, Christine
Moingeon, Philippe
author_facet Schiratti, Jean-Baptiste
Dubois, Rémy
Herent, Paul
Cahané, David
Dachary, Jocelyn
Clozel, Thomas
Wainrib, Gilles
Keime-Guibert, Florence
Lalande, Agnes
Pueyo, Maria
Guillier, Romain
Gabarroca, Christine
Moingeon, Philippe
author_sort Schiratti, Jean-Baptiste
collection PubMed
description BACKGROUND: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs. METHODS: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (OAI) database , we implemented a deep learning method to predict, from MR images and clinical variables including body mass index (BMI), further cartilage degradation measured by joint space narrowing at 12 months. RESULTS: Using COR IW TSE images, our classification model achieved a ROC AUC score of 65%. On a similar task, trained radiologists obtained a ROC AUC score of 58.7% highlighting the difficulty of the classification task. Additional analyses conducted in parallel to predict pain grade evaluated by the WOMAC pain index achieved a ROC AUC score of 72%. Attention maps provided evidence for distinct specific areas as being relevant in those two predictive models, including the medial joint space for JSN progression and the intra-articular space for pain prediction. CONCLUSIONS: This feasibility study demonstrates the interest of deep learning applied to OA, with a potential to support even trained radiologists in the challenging task of identifying patients with a high-risk of disease progression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-021-02634-4.
format Online
Article
Text
id pubmed-8521982
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-85219822021-10-21 A deep learning method for predicting knee osteoarthritis radiographic progression from MRI Schiratti, Jean-Baptiste Dubois, Rémy Herent, Paul Cahané, David Dachary, Jocelyn Clozel, Thomas Wainrib, Gilles Keime-Guibert, Florence Lalande, Agnes Pueyo, Maria Guillier, Romain Gabarroca, Christine Moingeon, Philippe Arthritis Res Ther Research Article BACKGROUND: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs. METHODS: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (OAI) database , we implemented a deep learning method to predict, from MR images and clinical variables including body mass index (BMI), further cartilage degradation measured by joint space narrowing at 12 months. RESULTS: Using COR IW TSE images, our classification model achieved a ROC AUC score of 65%. On a similar task, trained radiologists obtained a ROC AUC score of 58.7% highlighting the difficulty of the classification task. Additional analyses conducted in parallel to predict pain grade evaluated by the WOMAC pain index achieved a ROC AUC score of 72%. Attention maps provided evidence for distinct specific areas as being relevant in those two predictive models, including the medial joint space for JSN progression and the intra-articular space for pain prediction. CONCLUSIONS: This feasibility study demonstrates the interest of deep learning applied to OA, with a potential to support even trained radiologists in the challenging task of identifying patients with a high-risk of disease progression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-021-02634-4. BioMed Central 2021-10-18 2021 /pmc/articles/PMC8521982/ /pubmed/34663440 http://dx.doi.org/10.1186/s13075-021-02634-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Schiratti, Jean-Baptiste
Dubois, Rémy
Herent, Paul
Cahané, David
Dachary, Jocelyn
Clozel, Thomas
Wainrib, Gilles
Keime-Guibert, Florence
Lalande, Agnes
Pueyo, Maria
Guillier, Romain
Gabarroca, Christine
Moingeon, Philippe
A deep learning method for predicting knee osteoarthritis radiographic progression from MRI
title A deep learning method for predicting knee osteoarthritis radiographic progression from MRI
title_full A deep learning method for predicting knee osteoarthritis radiographic progression from MRI
title_fullStr A deep learning method for predicting knee osteoarthritis radiographic progression from MRI
title_full_unstemmed A deep learning method for predicting knee osteoarthritis radiographic progression from MRI
title_short A deep learning method for predicting knee osteoarthritis radiographic progression from MRI
title_sort deep learning method for predicting knee osteoarthritis radiographic progression from mri
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521982/
https://www.ncbi.nlm.nih.gov/pubmed/34663440
http://dx.doi.org/10.1186/s13075-021-02634-4
work_keys_str_mv AT schirattijeanbaptiste adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT duboisremy adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT herentpaul adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT cahanedavid adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT dacharyjocelyn adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT clozelthomas adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT wainribgilles adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT keimeguibertflorence adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT lalandeagnes adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT pueyomaria adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT guillierromain adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT gabarrocachristine adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT moingeonphilippe adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT schirattijeanbaptiste deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT duboisremy deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT herentpaul deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT cahanedavid deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT dacharyjocelyn deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT clozelthomas deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT wainribgilles deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT keimeguibertflorence deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT lalandeagnes deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT pueyomaria deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT guillierromain deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT gabarrocachristine deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri
AT moingeonphilippe deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri