Cargando…
A deep learning method for predicting knee osteoarthritis radiographic progression from MRI
BACKGROUND: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs. METHODS: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521982/ https://www.ncbi.nlm.nih.gov/pubmed/34663440 http://dx.doi.org/10.1186/s13075-021-02634-4 |
_version_ | 1784585001539469312 |
---|---|
author | Schiratti, Jean-Baptiste Dubois, Rémy Herent, Paul Cahané, David Dachary, Jocelyn Clozel, Thomas Wainrib, Gilles Keime-Guibert, Florence Lalande, Agnes Pueyo, Maria Guillier, Romain Gabarroca, Christine Moingeon, Philippe |
author_facet | Schiratti, Jean-Baptiste Dubois, Rémy Herent, Paul Cahané, David Dachary, Jocelyn Clozel, Thomas Wainrib, Gilles Keime-Guibert, Florence Lalande, Agnes Pueyo, Maria Guillier, Romain Gabarroca, Christine Moingeon, Philippe |
author_sort | Schiratti, Jean-Baptiste |
collection | PubMed |
description | BACKGROUND: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs. METHODS: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (OAI) database , we implemented a deep learning method to predict, from MR images and clinical variables including body mass index (BMI), further cartilage degradation measured by joint space narrowing at 12 months. RESULTS: Using COR IW TSE images, our classification model achieved a ROC AUC score of 65%. On a similar task, trained radiologists obtained a ROC AUC score of 58.7% highlighting the difficulty of the classification task. Additional analyses conducted in parallel to predict pain grade evaluated by the WOMAC pain index achieved a ROC AUC score of 72%. Attention maps provided evidence for distinct specific areas as being relevant in those two predictive models, including the medial joint space for JSN progression and the intra-articular space for pain prediction. CONCLUSIONS: This feasibility study demonstrates the interest of deep learning applied to OA, with a potential to support even trained radiologists in the challenging task of identifying patients with a high-risk of disease progression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-021-02634-4. |
format | Online Article Text |
id | pubmed-8521982 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-85219822021-10-21 A deep learning method for predicting knee osteoarthritis radiographic progression from MRI Schiratti, Jean-Baptiste Dubois, Rémy Herent, Paul Cahané, David Dachary, Jocelyn Clozel, Thomas Wainrib, Gilles Keime-Guibert, Florence Lalande, Agnes Pueyo, Maria Guillier, Romain Gabarroca, Christine Moingeon, Philippe Arthritis Res Ther Research Article BACKGROUND: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs. METHODS: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (OAI) database , we implemented a deep learning method to predict, from MR images and clinical variables including body mass index (BMI), further cartilage degradation measured by joint space narrowing at 12 months. RESULTS: Using COR IW TSE images, our classification model achieved a ROC AUC score of 65%. On a similar task, trained radiologists obtained a ROC AUC score of 58.7% highlighting the difficulty of the classification task. Additional analyses conducted in parallel to predict pain grade evaluated by the WOMAC pain index achieved a ROC AUC score of 72%. Attention maps provided evidence for distinct specific areas as being relevant in those two predictive models, including the medial joint space for JSN progression and the intra-articular space for pain prediction. CONCLUSIONS: This feasibility study demonstrates the interest of deep learning applied to OA, with a potential to support even trained radiologists in the challenging task of identifying patients with a high-risk of disease progression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-021-02634-4. BioMed Central 2021-10-18 2021 /pmc/articles/PMC8521982/ /pubmed/34663440 http://dx.doi.org/10.1186/s13075-021-02634-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Schiratti, Jean-Baptiste Dubois, Rémy Herent, Paul Cahané, David Dachary, Jocelyn Clozel, Thomas Wainrib, Gilles Keime-Guibert, Florence Lalande, Agnes Pueyo, Maria Guillier, Romain Gabarroca, Christine Moingeon, Philippe A deep learning method for predicting knee osteoarthritis radiographic progression from MRI |
title | A deep learning method for predicting knee osteoarthritis radiographic progression from MRI |
title_full | A deep learning method for predicting knee osteoarthritis radiographic progression from MRI |
title_fullStr | A deep learning method for predicting knee osteoarthritis radiographic progression from MRI |
title_full_unstemmed | A deep learning method for predicting knee osteoarthritis radiographic progression from MRI |
title_short | A deep learning method for predicting knee osteoarthritis radiographic progression from MRI |
title_sort | deep learning method for predicting knee osteoarthritis radiographic progression from mri |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521982/ https://www.ncbi.nlm.nih.gov/pubmed/34663440 http://dx.doi.org/10.1186/s13075-021-02634-4 |
work_keys_str_mv | AT schirattijeanbaptiste adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT duboisremy adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT herentpaul adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT cahanedavid adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT dacharyjocelyn adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT clozelthomas adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT wainribgilles adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT keimeguibertflorence adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT lalandeagnes adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT pueyomaria adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT guillierromain adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT gabarrocachristine adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT moingeonphilippe adeeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT schirattijeanbaptiste deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT duboisremy deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT herentpaul deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT cahanedavid deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT dacharyjocelyn deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT clozelthomas deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT wainribgilles deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT keimeguibertflorence deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT lalandeagnes deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT pueyomaria deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT guillierromain deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT gabarrocachristine deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri AT moingeonphilippe deeplearningmethodforpredictingkneeosteoarthritisradiographicprogressionfrommri |