Cargando…
A deep learning method for predicting knee osteoarthritis radiographic progression from MRI
BACKGROUND: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of structure is critical to facilitate the development of disease-modifying drugs. METHODS: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (...
Autores principales: | Schiratti, Jean-Baptiste, Dubois, Rémy, Herent, Paul, Cahané, David, Dachary, Jocelyn, Clozel, Thomas, Wainrib, Gilles, Keime-Guibert, Florence, Lalande, Agnes, Pueyo, Maria, Guillier, Romain, Gabarroca, Christine, Moingeon, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521982/ https://www.ncbi.nlm.nih.gov/pubmed/34663440 http://dx.doi.org/10.1186/s13075-021-02634-4 |
Ejemplares similares
-
Applications of transcriptomics in support of drug development for osteoarthritis
por: Kaplon, Hélène, et al.
Publicado: (2021) -
Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients
por: Lassau, Nathalie, et al.
Publicado: (2021) -
A simple inclusion criteria combination increases the rate of cartilage loss in patients with knee osteoarthritis
por: Imbert, Olivier, et al.
Publicado: (2021) -
Multiscale analysis of slow-fast neuronal learning models with noise
por: Galtier, Mathieu, et al.
Publicado: (2012) -
Rapid assessment and prediction of the efficiency of two preservatives against S. aureus in cosmetic products using High Content Screening—Confocal Laser Scanning Microscopy
por: Almoughrabie, Samia, et al.
Publicado: (2020)