Cargando…
Trends in COVID-19 Publications: Streamlining Research Using NLP and LDA
Background: Research publications related to the novel coronavirus disease COVID-19 are rapidly increasing. However, current online literature hubs, even with artificial intelligence, are limited in identifying the complexity of COVID-19 research topics. We developed a comprehensive Latent Dirichlet...
Autores principales: | Gupta, Akash, Aeron, Shrey, Agrawal, Anjali, Gupta, Himanshu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522017/ https://www.ncbi.nlm.nih.gov/pubmed/34713157 http://dx.doi.org/10.3389/fdgth.2021.686720 |
Ejemplares similares
-
Understanding the performance and reliability of NLP tools: a comparison of four NLP tools predicting stroke phenotypes in radiology reports
por: Casey, Arlene, et al.
Publicado: (2023) -
Spontaneously Generated Online Patient Experience of Modafinil: A Qualitative and NLP Analysis
por: Walsh, Julia, et al.
Publicado: (2021) -
Telemedicine in Arab Countries: Innovation, Research Trends, and Way Forward
por: Waqas, Ahmed, et al.
Publicado: (2021) -
LDA-based topic modeling for COVID-19-related sports research trends
por: Lee, Jea Woog, et al.
Publicado: (2022) -
Smartphone Technology for Clinical Communication in the COVID-19 Era: A Commentary on the Concerning Trends in Data Compliance
por: John, Bernadette, et al.
Publicado: (2022)