Cargando…
Simulation for a Mems-Based CTRNN Ultra-Low Power Implementation of Human Activity Recognition
This paper presents an energy-efficient classification framework that performs human activity recognition (HAR). Typically, HAR classification tasks require a computational platform that includes a processor and memory along with sensors and their interfaces, all of which consume significant power....
Autores principales: | Emad-Ud-Din, Muhammad, Hasan, Mohammad H., Jafari, Roozbeh, Pourkamali, Siavash, Alsaleem, Fadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522023/ https://www.ncbi.nlm.nih.gov/pubmed/34713201 http://dx.doi.org/10.3389/fdgth.2021.731076 |
Ejemplares similares
-
Exploiting Pull-In/Pull-Out Hysteresis in Electrostatic MEMS Sensor Networks to Realize a Novel Sensing Continuous-Time Recurrent Neural Network
por: H Hasan, Mohammad, et al.
Publicado: (2021) -
A Threshold Helium Leakage Detection Switch with Ultra Low Power Operation
por: Mohaidat, Sulaiman, et al.
Publicado: (2023) -
CardioMEMS Implantation Using Gadolinium-based Contrast Agent: A Case Report
por: Rali, Aniket S, et al.
Publicado: (2021) -
Facial recognition lock technology for social care settings: A qualitative evaluation of implementation of facial recognition locks at two residential care sites
por: Bradwell, H. L., et al.
Publicado: (2023) -
Colocalized Sensing and Intelligent Computing in Micro-Sensors
por: H Hasan, Mohammad, et al.
Publicado: (2020)