Cargando…
Hybrid deep learning of social media big data for predicting the evolution of COVID-19 transmission
In this study, a hybrid deep-learning model termed as ODANN, built upon neural networks (NN) coupled with data assimilation and natural language processing (NLP) features extraction methods, has been constructed to concurrently process daily COVID-19 time-series records and large volumes of COVID-19...
Autores principales: | Chew, Alvin Wei Ze, Pan, Yue, Wang, Ying, Zhang, Limao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522122/ https://www.ncbi.nlm.nih.gov/pubmed/34690447 http://dx.doi.org/10.1016/j.knosys.2021.107417 |
Ejemplares similares
-
Deep learning modeling of public’s sentiments towards temporal evolution of COVID-19 transmission
por: Wang, Ying, et al.
Publicado: (2022) -
Data-driven multiscale modelling and analysis of COVID-19 spatiotemporal evolution using explainable AI
por: Chew, Alvin Wei Ze, et al.
Publicado: (2022) -
Correlating dynamic climate conditions and socioeconomic-governmental factors to spatiotemporal spread of COVID-19 via semantic segmentation deep learning analysis
por: Chew, Alvin Wei Ze, et al.
Publicado: (2021) -
Big Data and Social Media
por: Cerf, Vint
Publicado: (2018) -
Social Media Big Data: The Good, The Bad, and the Ugly (Un)truths
por: Chew, Alton M. K., et al.
Publicado: (2021)