Cargando…
Building fuzzy time series model from unsupervised learning technique and genetic algorithm
This paper proposes a new model to interpolate time series and forecast it effectively for the future. The important contribution of this study is the combination of optimal techniques for fuzzy clustering problem using genetic algorithm and forecasting model for fuzzy time series. Firstly, the prop...
Autores principales: | Phamtoan, Dinh, Vovan, Tai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522192/ https://www.ncbi.nlm.nih.gov/pubmed/34690438 http://dx.doi.org/10.1007/s00521-021-06485-7 |
Ejemplares similares
-
BiLSTM and dynamic fuzzy AHP-GA method for procedural game level generation
por: İnce, Murat
Publicado: (2021) -
ANFIS for prediction of epidemic peak and infected cases for COVID-19 in India
por: Kumar, Rajagopal, et al.
Publicado: (2021) -
Performance measurement of construction suppliers under localization, agility, and digitalization criteria: Fuzzy Ordinal Priority Approach
por: Mahmoudi, Amin, et al.
Publicado: (2022) -
Uncertain rule-based fuzzy logic systems : introduction and new directions /
por: Mendel, Jerry M., 1938-
Publicado: (2001) -
Fuzzy incomplete linguistic preference relations
por: Wang, Tien-Chin, et al.
Publicado: (2022)