Cargando…
Multiparameter persistent homology landscapes identify immune cell spatial patterns in tumors
Highly resolved spatial data of complex systems encode rich and nonlinear information. Quantification of heterogeneous and noisy data—often with outliers, artifacts, and mislabeled points—such as those from tissues, remains a challenge. The mathematical field that extracts information from the shape...
Autores principales: | Vipond, Oliver, Bull, Joshua A., Macklin, Philip S., Tillmann, Ulrike, Pugh, Christopher W., Byrne, Helen M., Harrington, Heather A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522280/ https://www.ncbi.nlm.nih.gov/pubmed/34625491 http://dx.doi.org/10.1073/pnas.2102166118 |
Ejemplares similares
-
A roadmap for the computation of persistent homology
por: Otter, Nina, et al.
Publicado: (2017) -
Combining multiple spatial statistics enhances the description of immune cell localisation within tumours
por: Bull, Joshua A., et al.
Publicado: (2020) -
Homology of homologous knotted proteins
por: Benjamin, Katherine, et al.
Publicado: (2023) -
Quantification of spatial and phenotypic heterogeneity in an agent-based model of tumour-macrophage interactions
por: Bull, Joshua A., et al.
Publicado: (2023) -
Multiparameter mechanical and morphometric screening of cells
por: Masaeli, Mahdokht, et al.
Publicado: (2016)