Cargando…
Semi-supervised CycleGAN for domain transformation of chest CT images and its application to opacity classification of diffuse lung diseases
PURPOSE: The performance of deep learning may fluctuate depending on the imaging devices and settings. Although domain transformation such as CycleGAN for normalizing images is useful, CycleGAN does not use information on the disease classes. Therefore, we propose a semi-supervised CycleGAN with an...
Autores principales: | Mabu, Shingo, Miyake, Masashi, Kuremoto, Takashi, Kido, Shoji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522550/ https://www.ncbi.nlm.nih.gov/pubmed/34661818 http://dx.doi.org/10.1007/s11548-021-02490-2 |
Ejemplares similares
-
ADE-CycleGAN: A Detail Enhanced Image Dehazing CycleGAN Network
por: Yan, Bingnan, et al.
Publicado: (2023) -
Semi-supervised method for image texture classification of pituitary tumors via CycleGAN and optimized feature extraction
por: Zhu, Hong, et al.
Publicado: (2020) -
Study of low-dose PET image recovery using supervised learning with CycleGAN
por: Zhao, Kui, et al.
Publicado: (2020) -
CycleGAN for interpretable online EMT compensation
por: Krumb, Henry, et al.
Publicado: (2021) -
Comparative analysis of CycleGAN and AttentionGAN on face aging application
por: Sharma, Neha, et al.
Publicado: (2022)