Cargando…
Genetic Dissection Uncovers Genome-Wide Marker-Trait Associations for Plant Growth, Yield, and Yield-Related Traits Under Varying Nitrogen Levels in Nested Synthetic Wheat Introgression Libraries
Nitrogen is one of the most important macronutrients for crop growth and metabolism. To identify marker-trait associations for complex nitrogen use efficiency (NUE)-related agronomic traits, field experiments were conducted on nested synthetic wheat introgression libraries at three nitrogen input le...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522553/ https://www.ncbi.nlm.nih.gov/pubmed/34671376 http://dx.doi.org/10.3389/fpls.2021.738710 |
_version_ | 1784585110382706688 |
---|---|
author | Sandhu, Nitika Kaur, Amandeep Sethi, Mehak Kaur, Satinder Varinderpal-Singh, Sharma, Achla Bentley, Alison R. Barsby, Tina Chhuneja, Parveen |
author_facet | Sandhu, Nitika Kaur, Amandeep Sethi, Mehak Kaur, Satinder Varinderpal-Singh, Sharma, Achla Bentley, Alison R. Barsby, Tina Chhuneja, Parveen |
author_sort | Sandhu, Nitika |
collection | PubMed |
description | Nitrogen is one of the most important macronutrients for crop growth and metabolism. To identify marker-trait associations for complex nitrogen use efficiency (NUE)-related agronomic traits, field experiments were conducted on nested synthetic wheat introgression libraries at three nitrogen input levels across two seasons. The introgression libraries were genotyped using the 35K Axiom(®) Wheat Breeder's Array and genetic diversity and population structure were examined. Significant phenotypic variation was observed across genotypes, treatments, and their interactions across seasons for all the 22 traits measured. Significant positive correlations were observed among grain yield and yield-attributing traits and root traits. Across seasons, a total of 233 marker-trait associations (MTAs) associated with fifteen traits of interest at different levels of nitrogen (N0, N60, and N120) were detected using 9,474 genome-wide single nucleotide polymorphism (SNP) markers. Of these, 45 MTAs for 10 traits in the N0 treatment, 100 MTAs for 11 traits in the N60 treatment, and 88 MTAs for 11 traits in the N120 treatment were detected. We identified putative candidate genes underlying the significant MTAs which were associated directly or indirectly with various biological processes, cellular component organization, and molecular functions involving improved plant growth and grain yield. In addition, the top 10 lines based on N response and grain yield across seasons and treatments were identified. The identification and introgression of superior alleles/donors improving the NUE while maintaining grain yield may open new avenues in designing next generation nitrogen-efficient high-yielding wheat varieties. |
format | Online Article Text |
id | pubmed-8522553 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85225532021-10-19 Genetic Dissection Uncovers Genome-Wide Marker-Trait Associations for Plant Growth, Yield, and Yield-Related Traits Under Varying Nitrogen Levels in Nested Synthetic Wheat Introgression Libraries Sandhu, Nitika Kaur, Amandeep Sethi, Mehak Kaur, Satinder Varinderpal-Singh, Sharma, Achla Bentley, Alison R. Barsby, Tina Chhuneja, Parveen Front Plant Sci Plant Science Nitrogen is one of the most important macronutrients for crop growth and metabolism. To identify marker-trait associations for complex nitrogen use efficiency (NUE)-related agronomic traits, field experiments were conducted on nested synthetic wheat introgression libraries at three nitrogen input levels across two seasons. The introgression libraries were genotyped using the 35K Axiom(®) Wheat Breeder's Array and genetic diversity and population structure were examined. Significant phenotypic variation was observed across genotypes, treatments, and their interactions across seasons for all the 22 traits measured. Significant positive correlations were observed among grain yield and yield-attributing traits and root traits. Across seasons, a total of 233 marker-trait associations (MTAs) associated with fifteen traits of interest at different levels of nitrogen (N0, N60, and N120) were detected using 9,474 genome-wide single nucleotide polymorphism (SNP) markers. Of these, 45 MTAs for 10 traits in the N0 treatment, 100 MTAs for 11 traits in the N60 treatment, and 88 MTAs for 11 traits in the N120 treatment were detected. We identified putative candidate genes underlying the significant MTAs which were associated directly or indirectly with various biological processes, cellular component organization, and molecular functions involving improved plant growth and grain yield. In addition, the top 10 lines based on N response and grain yield across seasons and treatments were identified. The identification and introgression of superior alleles/donors improving the NUE while maintaining grain yield may open new avenues in designing next generation nitrogen-efficient high-yielding wheat varieties. Frontiers Media S.A. 2021-10-04 /pmc/articles/PMC8522553/ /pubmed/34671376 http://dx.doi.org/10.3389/fpls.2021.738710 Text en Copyright © 2021 Sandhu, Kaur, Sethi, Kaur, Varinderpal-Singh, Sharma, Bentley, Barsby and Chhuneja. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Sandhu, Nitika Kaur, Amandeep Sethi, Mehak Kaur, Satinder Varinderpal-Singh, Sharma, Achla Bentley, Alison R. Barsby, Tina Chhuneja, Parveen Genetic Dissection Uncovers Genome-Wide Marker-Trait Associations for Plant Growth, Yield, and Yield-Related Traits Under Varying Nitrogen Levels in Nested Synthetic Wheat Introgression Libraries |
title | Genetic Dissection Uncovers Genome-Wide Marker-Trait Associations for Plant Growth, Yield, and Yield-Related Traits Under Varying Nitrogen Levels in Nested Synthetic Wheat Introgression Libraries |
title_full | Genetic Dissection Uncovers Genome-Wide Marker-Trait Associations for Plant Growth, Yield, and Yield-Related Traits Under Varying Nitrogen Levels in Nested Synthetic Wheat Introgression Libraries |
title_fullStr | Genetic Dissection Uncovers Genome-Wide Marker-Trait Associations for Plant Growth, Yield, and Yield-Related Traits Under Varying Nitrogen Levels in Nested Synthetic Wheat Introgression Libraries |
title_full_unstemmed | Genetic Dissection Uncovers Genome-Wide Marker-Trait Associations for Plant Growth, Yield, and Yield-Related Traits Under Varying Nitrogen Levels in Nested Synthetic Wheat Introgression Libraries |
title_short | Genetic Dissection Uncovers Genome-Wide Marker-Trait Associations for Plant Growth, Yield, and Yield-Related Traits Under Varying Nitrogen Levels in Nested Synthetic Wheat Introgression Libraries |
title_sort | genetic dissection uncovers genome-wide marker-trait associations for plant growth, yield, and yield-related traits under varying nitrogen levels in nested synthetic wheat introgression libraries |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522553/ https://www.ncbi.nlm.nih.gov/pubmed/34671376 http://dx.doi.org/10.3389/fpls.2021.738710 |
work_keys_str_mv | AT sandhunitika geneticdissectionuncoversgenomewidemarkertraitassociationsforplantgrowthyieldandyieldrelatedtraitsundervaryingnitrogenlevelsinnestedsyntheticwheatintrogressionlibraries AT kauramandeep geneticdissectionuncoversgenomewidemarkertraitassociationsforplantgrowthyieldandyieldrelatedtraitsundervaryingnitrogenlevelsinnestedsyntheticwheatintrogressionlibraries AT sethimehak geneticdissectionuncoversgenomewidemarkertraitassociationsforplantgrowthyieldandyieldrelatedtraitsundervaryingnitrogenlevelsinnestedsyntheticwheatintrogressionlibraries AT kaursatinder geneticdissectionuncoversgenomewidemarkertraitassociationsforplantgrowthyieldandyieldrelatedtraitsundervaryingnitrogenlevelsinnestedsyntheticwheatintrogressionlibraries AT varinderpalsingh geneticdissectionuncoversgenomewidemarkertraitassociationsforplantgrowthyieldandyieldrelatedtraitsundervaryingnitrogenlevelsinnestedsyntheticwheatintrogressionlibraries AT sharmaachla geneticdissectionuncoversgenomewidemarkertraitassociationsforplantgrowthyieldandyieldrelatedtraitsundervaryingnitrogenlevelsinnestedsyntheticwheatintrogressionlibraries AT bentleyalisonr geneticdissectionuncoversgenomewidemarkertraitassociationsforplantgrowthyieldandyieldrelatedtraitsundervaryingnitrogenlevelsinnestedsyntheticwheatintrogressionlibraries AT barsbytina geneticdissectionuncoversgenomewidemarkertraitassociationsforplantgrowthyieldandyieldrelatedtraitsundervaryingnitrogenlevelsinnestedsyntheticwheatintrogressionlibraries AT chhunejaparveen geneticdissectionuncoversgenomewidemarkertraitassociationsforplantgrowthyieldandyieldrelatedtraitsundervaryingnitrogenlevelsinnestedsyntheticwheatintrogressionlibraries |