Cargando…
CGAT: Cell Graph ATtention Network for Grading of Pancreatic Disease Histology Images
Early detection of Pancreatic Ductal Adenocarcinoma (PDAC), one of the most aggressive malignancies of the pancreas, is crucial to avoid metastatic spread to other body regions. Detection of pancreatic cancer is typically carried out by assessing the distribution and arrangement of tumor and immune...
Autores principales: | Baranwal, Mayank, Krishnan, Santhoshi, Oneka, Morgan, Frankel, Timothy, Rao, Arvind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522581/ https://www.ncbi.nlm.nih.gov/pubmed/34671349 http://dx.doi.org/10.3389/fimmu.2021.727610 |
Ejemplares similares
-
CGAT: computational genomics analysis toolkit
por: Sims, David, et al.
Publicado: (2014) -
GaWRDenMap: a quantitative framework to study the local variation in cell–cell interactions in pancreatic disease subtypes
por: Krishnan, Santhoshi N., et al.
Publicado: (2022) -
CGAT: a model for immersive personalized training in computational genomics
por: Sims, David, et al.
Publicado: (2016) -
Towards the characterization of the tumor microenvironment through dictionary learning-based interpretable classification of multiplexed immunofluorescence images
por: Krishnan, Santhoshi N, et al.
Publicado: (2023) -
Struct2Graph: a graph attention network for structure based predictions of protein–protein interactions
por: Baranwal, Mayank, et al.
Publicado: (2022)