Cargando…
A new framework based on features modeling and ensemble learning to predict query performance
A query optimizer attempts to predict a performance metric based on the amount of time elapsed. Theoretically, this would necessitate the creation of a significant overhead on the core engine to provide the necessary query optimizing statistics. Machine learning is increasingly being used to improve...
Autores principales: | Zaghloul, Mohamed, Salem, Mofreh, Ali-Eldin, Amr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523072/ https://www.ncbi.nlm.nih.gov/pubmed/34662344 http://dx.doi.org/10.1371/journal.pone.0258439 |
Ejemplares similares
-
A Ruby API to query the Ensembl database for genomic features
por: Strozzi, Francesco, et al.
Publicado: (2011) -
ensemblQueryR: fast, flexible and high-throughput querying of Ensembl LD API endpoints in R
por: Fairbrother-Browne, Aine, et al.
Publicado: (2023) -
Predicting seismic-induced liquefaction through ensemble learning frameworks
por: Alobaidi, Mohammad H., et al.
Publicado: (2019) -
A Stacking Ensemble Learning Framework for Genomic Prediction
por: Liang, Mang, et al.
Publicado: (2021) -
An Ensembled Framework for Human Breast Cancer Survivability Prediction Using Deep Learning
por: Mustafa, Ehzaz, et al.
Publicado: (2023)