Cargando…
CST: A Multitask Learning Framework for Colorectal Cancer Region Mining Based on Transformer
Colorectal cancer is a high death rate cancer until now; from the clinical view, the diagnosis of the tumour region is critical for the doctors. But with data accumulation, this task takes lots of time and labor with large variances between different doctors. With the development of computer vision,...
Autores principales: | Sui, Dong, Zhang, Kang, Liu, Weifeng, Chen, Jing, Ma, Xiaoxuan, Tian, Zhaofeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523251/ https://www.ncbi.nlm.nih.gov/pubmed/34671677 http://dx.doi.org/10.1155/2021/6207964 |
Ejemplares similares
-
A Pyramid Architecture-Based Deep Learning Framework for Breast Cancer Detection
por: Sui, Dong, et al.
Publicado: (2021) -
A Multitask Deep Learning Framework for DNER
por: Jin, Ran, et al.
Publicado: (2022) -
CST: Complex Sparse Transformer for Low-SNR Speech Enhancement
por: Tan, Kaijun, et al.
Publicado: (2023) -
A multitask transfer learning framework for the prediction of virus-human protein–protein interactions
por: Dong, Thi Ngan, et al.
Publicado: (2021) -
Enzyme Commission Number Prediction and Benchmarking with Hierarchical Dual-core Multitask Learning Framework
por: Shi, Zhenkun, et al.
Publicado: (2023)