Cargando…
Application of Medical Imaging Based on Deep Learning in the Treatment of Lumbar Degenerative Diseases and Osteoporosis with Bone Cement Screws
OBJECTIVE: To explore the application value of magnetic resonance spectroscopy (MRS) and GSI-energy spectrum electronic computed tomography (CT) medical imaging based on the deep convolutional neural network (CNN) in the treatment of lumbar degenerative disease and osteoporosis. METHODS: There were...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523277/ https://www.ncbi.nlm.nih.gov/pubmed/34671416 http://dx.doi.org/10.1155/2021/2638495 |
Sumario: | OBJECTIVE: To explore the application value of magnetic resonance spectroscopy (MRS) and GSI-energy spectrum electronic computed tomography (CT) medical imaging based on the deep convolutional neural network (CNN) in the treatment of lumbar degenerative disease and osteoporosis. METHODS: There were 56 cases of suspected lumbar degenerative disease and osteoporosis. A group of 56 subjects were examined using 1.5 TMR spectrum (MRS) and dual-energy X-ray absorptiometry (DXA) to collect the lumbar L3 vertebral body fat ratio (FF) and L1~4 vertebral bone mineral density (BMD) value. We divided the subjects into 2 groups with T value -2.5 as the critical point. Set T value > -2.5 as the negative group and T value ≤ -2.5 as the positive group. Pearson's method is used for FF-MRS and BMD correlation analyses. A group of all patients underwent GSI-energy spectrum CT scan, and X-ray bone mineral density (DXA) test results (bone density per unit area) were used as the gold standard to analyze the diagnosis of osteoporosis by the GSI-energy spectrum CT scan method value. RESULTS: The differences in FF and BMD between the negative group and the positive group were statistically significant (P < 0.01), and there was a highly negative correlation between the average value of FF and BMD. 30 cases were diagnosed as osteoporosis by DXA. The accuracy of GSI-energy spectrum CT medical imaging in diagnosing osteoporosis is 89.30%. The GSI-energy spectrum CT diagnosis of osteoporosis and DXA examination results have good consistency. CONCLUSION: Based on the deep convolutional neural network (CNN) MRS technology, GSI-energy spectrum CT medical imaging is used in the clinical diagnosis and treatment of lumbar degenerative lesions and osteoporosis. It has a good advantage in assessing bone quality and has good consistency with DXA examination and has better application value high. |
---|