Cargando…
Joint segmentation and classification of hepatic lesions in ultrasound images using deep learning
OBJECTIVES: To develop a convolutional neural network system to jointly segment and classify a hepatic lesion selected by user clicks in ultrasound images. METHODS: In total, 4309 anonymized ultrasound images of 3873 patients with hepatic cyst (n = 1214), hemangioma (n = 1220), metastasis (n = 1001)...
Autores principales: | Ryu, Hwaseong, Shin, Seung Yeon, Lee, Jae Young, Lee, Kyoung Mu, Kang, Hyo-jin, Yi, Jonghyon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523410/ https://www.ncbi.nlm.nih.gov/pubmed/33881566 http://dx.doi.org/10.1007/s00330-021-07850-9 |
Ejemplares similares
-
Deep Learning–driven classification of external DICOM studies for PACS archiving
por: Jonske, Frederic, et al.
Publicado: (2022) -
COVID-19 classification of X-ray images using deep neural networks
por: Keidar, Daphna, et al.
Publicado: (2021) -
Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning
por: Lin, Yu-Chun, et al.
Publicado: (2023) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
Using deep learning to safely exclude lesions with only ultrafast breast MRI to shorten acquisition and reading time
por: Jing, Xueping, et al.
Publicado: (2022)