Cargando…
Winter survival of the unicellular green alga Micrasterias denticulata: insights from field monitoring and simulation experiments
Peat bog pools around Tamsweg (Lungau, Austria) are typical habitats of the unicellular green alga Micrasterias denticulata. By measurement of water temperature and irradiation throughout a 1-year period (2018/2019), it was intended to assess the natural environmental strain in winter. Freezing resi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523418/ https://www.ncbi.nlm.nih.gov/pubmed/34304308 http://dx.doi.org/10.1007/s00709-021-01682-6 |
Sumario: | Peat bog pools around Tamsweg (Lungau, Austria) are typical habitats of the unicellular green alga Micrasterias denticulata. By measurement of water temperature and irradiation throughout a 1-year period (2018/2019), it was intended to assess the natural environmental strain in winter. Freezing resistance of Micrasterias cells and their ability to frost harden and become tolerant to ice encasement were determined after natural hardening and exposure to a cold acclimation treatment that simulated the natural temperature decrease in autumn. Transmission electron microscopy (TEM) was performed in laboratory-cultivated cells, after artificial cold acclimation treatment and in cells collected from field. Throughout winter, the peat bog pools inhabited by Micrasterias remained unfrozen. Despite air temperature minima down to −17.3 °C, the water temperature was mostly close to +0.8 °C. The alga was unable to frost harden, and upon ice encasement, the cells showed successive frost damage. Despite an unchanged freezing stress tolerance, significant ultrastructural changes were observed in field-sampled cells and in response to the artificial cold acclimation treatment: organelles such as the endoplasmic reticulum and thylakoids of the chloroplast showed distinct membrane bloating. Still, in the field samples, the Golgi apparatus appeared in an impeccable condition, and multivesicular bodies were less frequently observed suggesting a lower overall stress strain. The observed ultrastructural changes in winter and after cold acclimation are interpreted as cytological adjustments to winter or a resting state but are not related to frost hardening as Micrasterias cells were unable to improve their freezing stress tolerance. |
---|