Cargando…

Improving 3D-3D facial registration methods: potential role of three-dimensional models in personal identification of the living

Personal identification of the living from video surveillance systems usually involves 2D images. However, the potentiality of three-dimensional facial models in gaining personal identification through 3D-3D comparison still needs to be verified. This study aims at testing the reliability of a proto...

Descripción completa

Detalles Bibliográficos
Autores principales: Gibelli, Daniele, Palamenghi, Andrea, Poppa, Pasquale, Sforza, Chiarella, Cattaneo, Cristina, De Angelis, Danilo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523506/
https://www.ncbi.nlm.nih.gov/pubmed/34241673
http://dx.doi.org/10.1007/s00414-021-02655-3
Descripción
Sumario:Personal identification of the living from video surveillance systems usually involves 2D images. However, the potentiality of three-dimensional facial models in gaining personal identification through 3D-3D comparison still needs to be verified. This study aims at testing the reliability of a protocol for 3D-3D registration of facial models, potentially useful for personal identification. Fifty male subjects aged between 18 and 45 years were randomly chosen from a database of 3D facial models acquired through stereophotogrammetry. For each subject, two acquisitions were available; the 3D models of faces were then registered onto other models belonging to the same and different individuals according to the least point-to-point distance on the entire facial surface, for a total of 50 matches and 50 mismatches. RMS value (root mean square) of point-to-point distance between the two models was then calculated through the VAM® software. Intra- and inter-observer errors were assessed through calculation of relative technical error of measurement (rTEM). Possible statistically significant differences between matches and mismatches were assessed through Mann–Whitney test (p < 0.05). Both for intra- and inter-observer repeatability rTEM was between 2.2 and 5.2%. Average RMS point-to-point distance was 0.50 ± 0.28 mm in matches, 2.62 ± 0.56 mm in mismatches (p < 0.01). An RMS threshold of 1.50 mm could distinguish matches and mismatches in 100% of cases. This study provides an improvement to existing 3D-3D superimposition methods and confirms the great advantages which may derive to personal identification of the living from 3D facial analysis.