Cargando…
Optimizing Adaptive Notifications in Mobile Health Interventions Systems: Reinforcement Learning from a Data-driven Behavioral Simulator
Mobile health (mHealth) intervention systems can employ adaptive strategies to interact with users. Instead of designing such complex strategies manually, reinforcement learning (RL) can be used to adaptively optimize intervention strategies concerning the user’s context. In this paper, we focus on...
Autores principales: | Wang, Shihan, Zhang, Chao, Kröse, Ben, van Hoof, Herke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523513/ https://www.ncbi.nlm.nih.gov/pubmed/34664120 http://dx.doi.org/10.1007/s10916-021-01773-0 |
Ejemplares similares
-
Factors Affecting User’s Behavioral Intention and Use of a Mobile-Phone-Delivered Cognitive Behavioral Therapy for Insomnia: A Small-Scale UTAUT Analysis
por: Fitrianie, Siska, et al.
Publicado: (2021) -
Mobile Workflow in Computed Tomography of the Chest
por: Wetzl, Matthias, et al.
Publicado: (2018) -
Cloud Computing Mobile Application for Remote Monitoring of Bell’s Palsy
por: Watts, P, et al.
Publicado: (2020) -
Mobile Triage Applications: A Systematic Review in Literature and Play Store
por: Montano, Isabel Herrera, et al.
Publicado: (2021) -
Efficiency of Mobile Video Sharing Application (WhatsApp®) in Live Field Image Transmission for Telepathology
por: Das, Rituparna, et al.
Publicado: (2020)