Cargando…
A systematic review of smartphone-based human activity recognition methods for health research
Smartphones are now nearly ubiquitous; their numerous built-in sensors enable continuous measurement of activities of daily living, making them especially well-suited for health research. Researchers have proposed various human activity recognition (HAR) systems aimed at translating measurements fro...
Autores principales: | Straczkiewicz, Marcin, James, Peter, Onnela, Jukka-Pekka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523707/ https://www.ncbi.nlm.nih.gov/pubmed/34663863 http://dx.doi.org/10.1038/s41746-021-00514-4 |
Ejemplares similares
-
A “one-size-fits-most” walking recognition method for smartphones, smartwatches, and wearable accelerometers
por: Straczkiewicz, Marcin, et al.
Publicado: (2023) -
Validation of an open-source smartphone step counting algorithm in clinical and non-clinical settings
por: Straczkiewicz, Marcin, et al.
Publicado: (2023) -
Smartphone-Based Activity Recognition Using Multistream Movelets Combining Accelerometer and Gyroscope Data
por: Huang, Emily J., et al.
Publicado: (2022) -
Open-Source, Step-Counting Algorithm for Smartphone Data Collected in Clinical and Nonclinical Settings: Algorithm Development and Validation Study
por: Straczkiewicz, Marcin, et al.
Publicado: (2023) -
Augmented Movelet Method for Activity Classification Using Smartphone Gyroscope and Accelerometer Data
por: Huang, Emily J., et al.
Publicado: (2020)