Cargando…
Opportunities and Challenges for Machine Learning in Rare Diseases
Rare diseases (RDs) are complicated health conditions that are difficult to be managed at several levels. The scarcity of available data chiefly determines an intricate scenario even for experts and specialized clinicians, which in turn leads to the so called “diagnostic odyssey” for the patient. Th...
Autores principales: | Decherchi, Sergio, Pedrini, Elena, Mordenti, Marina, Cavalli, Andrea, Sangiorgi, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523988/ https://www.ncbi.nlm.nih.gov/pubmed/34676229 http://dx.doi.org/10.3389/fmed.2021.747612 |
Ejemplares similares
-
Remodeling an existing rare disease registry to be used in regulatory context: Lessons learned and recommendations
por: Mordenti, Marina, et al.
Publicado: (2022) -
Skeletal dysplasias: approach to the clinical diagnosis and implication of appropriate diagnosis for knowledge and research studies in these rare diseases. Hereditary multiple Osteochondromas as example/paradigm
por: Gnoli, Maria, et al.
Publicado: (2014) -
Editorial: Molecular Dynamics and Machine Learning in Drug Discovery
por: Decherchi, Sergio, et al.
Publicado: (2021) -
Machine Learning and Enhanced Sampling Simulations
for Computing the Potential of Mean Force and Standard Binding Free
Energy
por: Bertazzo, Martina, et al.
Publicado: (2021) -
Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging
por: Sanchez-Martinez, Sergio, et al.
Publicado: (2022)