Cargando…
Characterization and Duodenal Transcriptome Analysis of Chinese Beef Cattle With Divergent Feed Efficiency Using RNA-Seq
Residual feed intake (RFI) is an important measure of feed efficiency for agricultural animals. Factors associated with cattle RFI include physiology, dietary factors, and the environment. However, a precise genetic mechanism underlying cattle RFI variations in duodenal tissue is currently unavailab...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524388/ https://www.ncbi.nlm.nih.gov/pubmed/34675965 http://dx.doi.org/10.3389/fgene.2021.741878 |
_version_ | 1784585502701125632 |
---|---|
author | Yang, Chaoyun Han, Liyun Li, Peng Ding, Yanling Zhu, Yun Huang, Zengwen Dan, Xingang Shi, Yuangang Kang, Xiaolong |
author_facet | Yang, Chaoyun Han, Liyun Li, Peng Ding, Yanling Zhu, Yun Huang, Zengwen Dan, Xingang Shi, Yuangang Kang, Xiaolong |
author_sort | Yang, Chaoyun |
collection | PubMed |
description | Residual feed intake (RFI) is an important measure of feed efficiency for agricultural animals. Factors associated with cattle RFI include physiology, dietary factors, and the environment. However, a precise genetic mechanism underlying cattle RFI variations in duodenal tissue is currently unavailable. The present study aimed to identify the key genes and functional pathways contributing to variance in cattle RFI phenotypes using RNA sequencing (RNA-seq). Six bulls with extremely high or low RFIs were selected for detecting differentially expressed genes (DEGs) by RNA-seq, followed by conducting GO, KEGG enrichment, protein-protein interaction (PPI), and co-expression network (WGCNA, n = 10) analysis. A total of 380 differentially expressed genes was obtained from high and low RFI groups, including genes related to energy metabolism (ALDOA, HADHB, INPPL1), mitochondrial function (NDUFS1, RFN4, CUL1), and feed intake behavior (CCK). Two key sub-networks and 26 key genes were detected using GO analysis of DEGs and PPI analysis, such as TPM1 and TPM2, which are involved in mitochondrial pathways and protein synthesis. Through WGCNA, a gene network was built, and genes were sorted into 27 modules, among which the blue (r = 0.72, p = 0.03) and salmon modules (r = −0.87, p = 0.002) were most closely related with RFI. DEGs and genes from the main sub-networks and closely related modules were largely involved in metabolism; oxidative phosphorylation; glucagon, ribosome, and N-glycan biosynthesis, and the MAPK and PI3K-Akt signaling pathways. Through WGCNA, five key genes, including FN1 and TPM2, associated with the biological regulation of oxidative processes and skeletal muscle development were identified. Taken together, our data suggest that the duodenum has specific biological functions in regulating feed intake. Our findings provide broad-scale perspectives for identifying potential pathways and key genes involved in the regulation of feed efficiency in beef cattle. |
format | Online Article Text |
id | pubmed-8524388 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85243882021-10-20 Characterization and Duodenal Transcriptome Analysis of Chinese Beef Cattle With Divergent Feed Efficiency Using RNA-Seq Yang, Chaoyun Han, Liyun Li, Peng Ding, Yanling Zhu, Yun Huang, Zengwen Dan, Xingang Shi, Yuangang Kang, Xiaolong Front Genet Genetics Residual feed intake (RFI) is an important measure of feed efficiency for agricultural animals. Factors associated with cattle RFI include physiology, dietary factors, and the environment. However, a precise genetic mechanism underlying cattle RFI variations in duodenal tissue is currently unavailable. The present study aimed to identify the key genes and functional pathways contributing to variance in cattle RFI phenotypes using RNA sequencing (RNA-seq). Six bulls with extremely high or low RFIs were selected for detecting differentially expressed genes (DEGs) by RNA-seq, followed by conducting GO, KEGG enrichment, protein-protein interaction (PPI), and co-expression network (WGCNA, n = 10) analysis. A total of 380 differentially expressed genes was obtained from high and low RFI groups, including genes related to energy metabolism (ALDOA, HADHB, INPPL1), mitochondrial function (NDUFS1, RFN4, CUL1), and feed intake behavior (CCK). Two key sub-networks and 26 key genes were detected using GO analysis of DEGs and PPI analysis, such as TPM1 and TPM2, which are involved in mitochondrial pathways and protein synthesis. Through WGCNA, a gene network was built, and genes were sorted into 27 modules, among which the blue (r = 0.72, p = 0.03) and salmon modules (r = −0.87, p = 0.002) were most closely related with RFI. DEGs and genes from the main sub-networks and closely related modules were largely involved in metabolism; oxidative phosphorylation; glucagon, ribosome, and N-glycan biosynthesis, and the MAPK and PI3K-Akt signaling pathways. Through WGCNA, five key genes, including FN1 and TPM2, associated with the biological regulation of oxidative processes and skeletal muscle development were identified. Taken together, our data suggest that the duodenum has specific biological functions in regulating feed intake. Our findings provide broad-scale perspectives for identifying potential pathways and key genes involved in the regulation of feed efficiency in beef cattle. Frontiers Media S.A. 2021-10-05 /pmc/articles/PMC8524388/ /pubmed/34675965 http://dx.doi.org/10.3389/fgene.2021.741878 Text en Copyright © 2021 Yang, Han, Li, Ding, Zhu, Huang, Dan, Shi and Kang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Yang, Chaoyun Han, Liyun Li, Peng Ding, Yanling Zhu, Yun Huang, Zengwen Dan, Xingang Shi, Yuangang Kang, Xiaolong Characterization and Duodenal Transcriptome Analysis of Chinese Beef Cattle With Divergent Feed Efficiency Using RNA-Seq |
title | Characterization and Duodenal Transcriptome Analysis of Chinese Beef Cattle With Divergent Feed Efficiency Using RNA-Seq |
title_full | Characterization and Duodenal Transcriptome Analysis of Chinese Beef Cattle With Divergent Feed Efficiency Using RNA-Seq |
title_fullStr | Characterization and Duodenal Transcriptome Analysis of Chinese Beef Cattle With Divergent Feed Efficiency Using RNA-Seq |
title_full_unstemmed | Characterization and Duodenal Transcriptome Analysis of Chinese Beef Cattle With Divergent Feed Efficiency Using RNA-Seq |
title_short | Characterization and Duodenal Transcriptome Analysis of Chinese Beef Cattle With Divergent Feed Efficiency Using RNA-Seq |
title_sort | characterization and duodenal transcriptome analysis of chinese beef cattle with divergent feed efficiency using rna-seq |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524388/ https://www.ncbi.nlm.nih.gov/pubmed/34675965 http://dx.doi.org/10.3389/fgene.2021.741878 |
work_keys_str_mv | AT yangchaoyun characterizationandduodenaltranscriptomeanalysisofchinesebeefcattlewithdivergentfeedefficiencyusingrnaseq AT hanliyun characterizationandduodenaltranscriptomeanalysisofchinesebeefcattlewithdivergentfeedefficiencyusingrnaseq AT lipeng characterizationandduodenaltranscriptomeanalysisofchinesebeefcattlewithdivergentfeedefficiencyusingrnaseq AT dingyanling characterizationandduodenaltranscriptomeanalysisofchinesebeefcattlewithdivergentfeedefficiencyusingrnaseq AT zhuyun characterizationandduodenaltranscriptomeanalysisofchinesebeefcattlewithdivergentfeedefficiencyusingrnaseq AT huangzengwen characterizationandduodenaltranscriptomeanalysisofchinesebeefcattlewithdivergentfeedefficiencyusingrnaseq AT danxingang characterizationandduodenaltranscriptomeanalysisofchinesebeefcattlewithdivergentfeedefficiencyusingrnaseq AT shiyuangang characterizationandduodenaltranscriptomeanalysisofchinesebeefcattlewithdivergentfeedefficiencyusingrnaseq AT kangxiaolong characterizationandduodenaltranscriptomeanalysisofchinesebeefcattlewithdivergentfeedefficiencyusingrnaseq |