Cargando…

Whole-exome sequencing identifies an RS1 variant in a Chinese family with X-linked retinoschisis

A notable behavioural feature of X-linked retinoschisis (XLRS) is extensive structural schisis (splitting) of the outer plexiform and inner nuclear layers of the neurosensory retina, which is partly combined with complications related to vitreous hemorrhage, macular holes and retinal detachment. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Doudou, Zhu, Siquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524742/
https://www.ncbi.nlm.nih.gov/pubmed/34675999
http://dx.doi.org/10.3892/etm.2021.10842
_version_ 1784585541886410752
author Chen, Doudou
Zhu, Siquan
author_facet Chen, Doudou
Zhu, Siquan
author_sort Chen, Doudou
collection PubMed
description A notable behavioural feature of X-linked retinoschisis (XLRS) is extensive structural schisis (splitting) of the outer plexiform and inner nuclear layers of the neurosensory retina, which is partly combined with complications related to vitreous hemorrhage, macular holes and retinal detachment. The present study aimed to identify the pathogenic gene mutation in a three-generation Chinese family with XLRS by whole-exome sequencing (WES). The clinical information of a three-generation Chinese family with cases of XLRS was collected. WES was performed for the proband. A comparison with the human reference genome sequence (hg38) and bioinformatic analysis were performed to reveal putative variants and Sanger sequencing was applied to verify mutations in this family and healthy control participants. Intraretinal cystic spaces were detected by optical coherence tomography imaging. Structures of the wild-type and mutant retinoschisin 1 (RS1) protein were modelled by PyMol. Almost all patients had a history of vision loss and abnormal blue-purple colour vision; however, the phenotypes of the 4 patients were distinctly different. There was no linear correlation between phenotypic severity and age. A recurrent RS1 (Xp22.2) mutation (NM_000330: c.559C>T) was detected, resulting in the p.Q187X variant. According to the protein model, this variant is likely pathogenic. The present study was the first to report that RS1:c.559C>T induces XLRS in a three-generation Chinese pedigree, with the mutation leading to premature termination of translation of the RS1 protein. WES was able to diagnose XLRS, which has the characteristics of clinical and genetic heterogeneity.
format Online
Article
Text
id pubmed-8524742
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-85247422021-10-20 Whole-exome sequencing identifies an RS1 variant in a Chinese family with X-linked retinoschisis Chen, Doudou Zhu, Siquan Exp Ther Med Articles A notable behavioural feature of X-linked retinoschisis (XLRS) is extensive structural schisis (splitting) of the outer plexiform and inner nuclear layers of the neurosensory retina, which is partly combined with complications related to vitreous hemorrhage, macular holes and retinal detachment. The present study aimed to identify the pathogenic gene mutation in a three-generation Chinese family with XLRS by whole-exome sequencing (WES). The clinical information of a three-generation Chinese family with cases of XLRS was collected. WES was performed for the proband. A comparison with the human reference genome sequence (hg38) and bioinformatic analysis were performed to reveal putative variants and Sanger sequencing was applied to verify mutations in this family and healthy control participants. Intraretinal cystic spaces were detected by optical coherence tomography imaging. Structures of the wild-type and mutant retinoschisin 1 (RS1) protein were modelled by PyMol. Almost all patients had a history of vision loss and abnormal blue-purple colour vision; however, the phenotypes of the 4 patients were distinctly different. There was no linear correlation between phenotypic severity and age. A recurrent RS1 (Xp22.2) mutation (NM_000330: c.559C>T) was detected, resulting in the p.Q187X variant. According to the protein model, this variant is likely pathogenic. The present study was the first to report that RS1:c.559C>T induces XLRS in a three-generation Chinese pedigree, with the mutation leading to premature termination of translation of the RS1 protein. WES was able to diagnose XLRS, which has the characteristics of clinical and genetic heterogeneity. D.A. Spandidos 2021-12 2021-10-05 /pmc/articles/PMC8524742/ /pubmed/34675999 http://dx.doi.org/10.3892/etm.2021.10842 Text en Copyright: © Chen et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Chen, Doudou
Zhu, Siquan
Whole-exome sequencing identifies an RS1 variant in a Chinese family with X-linked retinoschisis
title Whole-exome sequencing identifies an RS1 variant in a Chinese family with X-linked retinoschisis
title_full Whole-exome sequencing identifies an RS1 variant in a Chinese family with X-linked retinoschisis
title_fullStr Whole-exome sequencing identifies an RS1 variant in a Chinese family with X-linked retinoschisis
title_full_unstemmed Whole-exome sequencing identifies an RS1 variant in a Chinese family with X-linked retinoschisis
title_short Whole-exome sequencing identifies an RS1 variant in a Chinese family with X-linked retinoschisis
title_sort whole-exome sequencing identifies an rs1 variant in a chinese family with x-linked retinoschisis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524742/
https://www.ncbi.nlm.nih.gov/pubmed/34675999
http://dx.doi.org/10.3892/etm.2021.10842
work_keys_str_mv AT chendoudou wholeexomesequencingidentifiesanrs1variantinachinesefamilywithxlinkedretinoschisis
AT zhusiquan wholeexomesequencingidentifiesanrs1variantinachinesefamilywithxlinkedretinoschisis