Cargando…

Classification of moving coronary calcified plaques based on motion artifacts using convolutional neural networks: a robotic simulating study on influential factors

BACKGROUND: Motion artifacts affect the images of coronary calcified plaques. This study utilized convolutional neural networks (CNNs) to classify the motion-contaminated images of moving coronary calcified plaques and to determine the influential factors for the classification performance. METHODS:...

Descripción completa

Detalles Bibliográficos
Autores principales: Dobrolińska, Magdalena, van der Werf, Niels, Greuter, Marcel, Jiang, Beibei, Slart, Riemer, Xie, Xueqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524892/
https://www.ncbi.nlm.nih.gov/pubmed/34666714
http://dx.doi.org/10.1186/s12880-021-00680-7
Descripción
Sumario:BACKGROUND: Motion artifacts affect the images of coronary calcified plaques. This study utilized convolutional neural networks (CNNs) to classify the motion-contaminated images of moving coronary calcified plaques and to determine the influential factors for the classification performance. METHODS: Two artificial coronary arteries containing four artificial plaques of different densities were placed on a robotic arm in an anthropomorphic thorax phantom. Each artery moved linearly at velocities ranging from 0 to 60 mm/s. CT examinations were performed with four state-of-the-art CT systems. All images were reconstructed with filtered back projection and at least three levels of iterative reconstruction. Each examination was performed at 100%, 80% and 40% radiation dose. Three deep CNN architectures were used for training the classification models. A five-fold cross-validation procedure was applied to validate the models. RESULTS: The accuracy of the CNN classification was 90.2 ± 3.1%, 90.6 ± 3.5%, and 90.1 ± 3.2% for the artificial plaques using Inception v3, ResNet101 and DenseNet201 CNN architectures, respectively. In the multivariate analysis, higher density and increasing velocity were significantly associated with higher classification accuracy (all P < 0.001). The classification accuracy in all three CNN architectures was not affected by CT system, radiation dose or image reconstruction method (all P > 0.05). CONCLUSIONS: The CNN achieved a high accuracy of 90% when classifying the motion-contaminated images into the actual category, regardless of different vendors, velocities, radiation doses, and reconstruction algorithms, which indicates the potential value of using a CNN to correct calcium scores. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12880-021-00680-7.