Cargando…
The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions
DNA barcoding is particularly useful for identification and species delimitation in taxa with conserved morphology. Pseudoscorpions are arachnids with high prevalence of morphological crypsis. Here, we present the first comprehensive DNA barcode library for Central European Pseudoscorpiones, coverin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525104/ https://www.ncbi.nlm.nih.gov/pubmed/34707820 http://dx.doi.org/10.1002/ece3.8088 |
Sumario: | DNA barcoding is particularly useful for identification and species delimitation in taxa with conserved morphology. Pseudoscorpions are arachnids with high prevalence of morphological crypsis. Here, we present the first comprehensive DNA barcode library for Central European Pseudoscorpiones, covering 70% of the German pseudoscorpion fauna (35 out of 50 species). For 21 species, we provide the first publicly available COI barcodes, including the rare Anthrenochernes stellae Lohmander, a species protected by the FFH Habitats Directive. The pattern of intraspecific COI variation and interspecific COI variation (i.e., presence of a barcode gap) generally allows application of the DNA barcoding approach, but revision of current taxonomic designations is indicated in several taxa. Sequences of 36 morphospecies were assigned to 74 BINs (barcode index numbers). This unusually high number of intraspecific BINs can be explained by the presence of overlooked cryptic species and by the accelerated substitution rate in the mitochondrial genome of pseudoscorpions, as known from previous studies. Therefore, BINs may not be an appropriate proxy for species numbers in pseudoscorpions, while partitions built with the ASAP algorithm (Assemble Species by Automatic Partitioning) correspond well with putative species. ASAP delineated 51 taxonomic units from our data, an increase of 42% compared with the present taxonomy. The Neobisium carcionoides complex, currently considered a polymorphic species, represents an outstanding example of cryptic diversity: 154 sequences from our dataset were allocated to 23 BINs and 12 ASAP units. |
---|