Cargando…

Phylogenetic significance of the characteristics of simple sequence repeats at the genus level based on the complete chloroplast genome sequences of Cyatheaceae

The simple sequence repeats (SSRs) of plant chloroplasts show considerable genetic variation and have been widely used in species identification and phylogenetic relationship determination. Whether chloroplast genome SSRs can be used to classify Cyatheaceae species has not yet been studied. Therefor...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Ming, Feng, Peipei, Ping, Jingyao, Li, Jinye, Su, YingJuan, Wang, Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525152/
https://www.ncbi.nlm.nih.gov/pubmed/34707858
http://dx.doi.org/10.1002/ece3.8151
Descripción
Sumario:The simple sequence repeats (SSRs) of plant chloroplasts show considerable genetic variation and have been widely used in species identification and phylogenetic relationship determination. Whether chloroplast genome SSRs can be used to classify Cyatheaceae species has not yet been studied. Therefore, the chloroplast genomes of eight Cyatheaceae species were sequenced, and their SSR characteristics were compared and statistically analyzed. The results showed that the chloroplast genome structure was highly conserved (genome size: 154,046–166,151 bp), and the gene content (117 genes) and gene order were highly consistent. The distribution characteristics of SSRs (number, relative abundance, relative density, GC content) showed taxon specificity. The primary results were the total numbers of SSRs and mononucleotides: Gymnosphaera (61–67 and 40–47, respectively), Alsophila (121–122 and 95–96), and Sphaeropteris (102–103 and 77–80). Statistical and clustering analyses of SSR characteristics showed that their distribution was consistent with the recent classification of Cyatheaceae, which divided the eight Cyatheaceae species into three genera. This study indicates that the distribution characteristics of Cyatheaceae chloroplast SSRs can provide useful phylogenic information at the genus level.