Cargando…

Repurposing of Anthocyanin Biosynthesis for Plant Transformation and Genome Editing

CRISPR/Cas9 gene editing technology has been very effective in editing genes in many plant species including rice. Here we further improve the current CRISPR/Cas9 gene editing technology in both efficiency and time needed for isolation of transgene-free and target gene-edited plants. We coupled the...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Yubing, Zhu, Min, Wu, Junhua, Ouyang, Lejun, Wang, Rongchen, Sun, Hui, Yan, Lang, Wang, Lihao, Xu, Meilian, Zhan, Huadong, Zhao, Yunde
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525376/
https://www.ncbi.nlm.nih.gov/pubmed/34713232
http://dx.doi.org/10.3389/fgeed.2020.607982
Descripción
Sumario:CRISPR/Cas9 gene editing technology has been very effective in editing genes in many plant species including rice. Here we further improve the current CRISPR/Cas9 gene editing technology in both efficiency and time needed for isolation of transgene-free and target gene-edited plants. We coupled the CRISPR/Cas9 cassette with a unit that activates anthocyanin biosynthesis, providing a visible marker for detecting the presence of transgenes. The anthocyanin-marker assisted CRISPR (AAC) technology enables us to identify transgenic events even at calli stage, to select transformants with elevated Cas9 expression, and to identify transgene-free plants in the field. We used the AAC technology to edit LAZY1 and G1 and successfully generated many transgene-free and target gene-edited plants at T1 generation. The AAC technology greatly reduced the labor, time, and costs needed for editing target genes in rice.