Cargando…

Environmental Heat Exposure Among Pet Dogs in Rural and Urban Settings in the Southern United States

With advancing global climate change, heat-related illnesses and injuries are anticipated to become more prevalent for humans and other species. Canine hyperthermia is already considered an important seasonal emergency. Studies have been performed on the risk factors for heat stroke in canine athlet...

Descripción completa

Detalles Bibliográficos
Autores principales: Moon, Katherine E., Wang, Suwei, Bryant, Kaya, Gohlke, Julia M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525463/
https://www.ncbi.nlm.nih.gov/pubmed/34676256
http://dx.doi.org/10.3389/fvets.2021.742926
Descripción
Sumario:With advancing global climate change, heat-related illnesses and injuries are anticipated to become more prevalent for humans and other species. Canine hyperthermia is already considered an important seasonal emergency. Studies have been performed on the risk factors for heat stroke in canine athletes and military working dogs; however there is limited knowledge on environmental risk factors for the average pet dog. This observational study explores variation in individually experienced environmental temperatures of pet dogs (N = 30) in rural and urban environments in central Alabama. Temperature data from dogs and their owners was collected using wearable personal thermometers. Demographic data on the dogs was collected using a brief survey instrument completed by their owners. Dogs included in the study varied in signalment, activity level, and home environment. Linear mixed effects regression models were used to analyze repeated measure temperature and heat index values from canine thermometers to explore the effect of environmental factors on the overall heat exposure risk of canine pets. Specifically, the heat exposures of dogs were modeled considering their owner's experienced temperatures, as well as neighborhood and local weather station measurements, to identify factors that contribute to the heat exposure of individual dogs, and therefore potentially contribute to heat stress in the average pet dog. Results show hourly averaged temperatures for dogs followed a diurnal pattern consistent with both owner and ambient temperature measurements, except for indoor dogs whose recordings remained stable throughout the day. Heat index calculations showed that owners, in general, had more hours categorized into the National Weather Station safe category compared to their dogs, and that indoor dogs had a greater proportion of hours categorized as safe compared to outdoor dogs. Our results suggest that the risk of the average pet dog to high environmental heat exposure may be greater than traditional measures indicate, emphasizing that more localized considerations of temperature are important when assessing a dog's environmental risk for heat-related injury or illness.