Cargando…
Real-time lane detection model based on non bottleneck skip residual connections and attention pyramids
The security of car driving is of interest due to the growing number of motor vehicles and frequent occurrence of road traffic accidents, and the combination of advanced driving assistance system (ADAS) and vehicle-road cooperation can prevent more than 90% of traffic accidents. Lane detection, as a...
Autores principales: | Chen, Lichao, Xu, Xiuzhi, Pan, Lihu, Cao, Jianfang, Li, Xiaoming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525742/ https://www.ncbi.nlm.nih.gov/pubmed/34665806 http://dx.doi.org/10.1371/journal.pone.0252755 |
Ejemplares similares
-
An End-to-End Lane Detection Model with Attention and Residual Block
por: Wang, Bo, et al.
Publicado: (2022) -
Dermoscopic image segmentation based on Pyramid Residual Attention Module
por: Jiang, Yun, et al.
Publicado: (2022) -
Interactive Attention Learning on Detection of Lane and Lane Marking on the Road by Monocular Camera Image
por: Tian, Wei, et al.
Publicado: (2023) -
E-GCS: Detection of COVID-19 through classification by attention bottleneck residual network
por: Ahila, T., et al.
Publicado: (2022) -
Efficient Skip Connections-Based Residual Network (ESRNet) for Brain Tumor Classification
por: B., Ashwini, et al.
Publicado: (2023)