Cargando…
Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein
The present study is associated with the development of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein. Proliposomes were developed by thin film hydration method and converted into the liposomal derived gel using carbopol-934 as a gelling agent. Formulat...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525764/ https://www.ncbi.nlm.nih.gov/pubmed/34665836 http://dx.doi.org/10.1371/journal.pone.0258141 |
_version_ | 1784585747018285056 |
---|---|
author | Shah, Hassan Madni, Asadullah Rahim, Muhammad Abdur Jan, Nasrullah Khan, Arshad Khan, Safiullah Jabar, Abdul Ali, Ahsan |
author_facet | Shah, Hassan Madni, Asadullah Rahim, Muhammad Abdur Jan, Nasrullah Khan, Arshad Khan, Safiullah Jabar, Abdul Ali, Ahsan |
author_sort | Shah, Hassan |
collection | PubMed |
description | The present study is associated with the development of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein. Proliposomes were developed by thin film hydration method and converted into the liposomal derived gel using carbopol-934 as a gelling agent. Formulations with varied lecithin to cholesterol ratios were investigated to obtain the optimal size, entrapment efficiency, and enhanced in vitro dissolution. Dynamic light scattering analysis revealed the particle size and zeta potential in the range of 385.1±2.45–762.8±2.05 nm and -22.4±0.55–31.2±0.96mV respectively. Fourier transform infrared (FTIR) spectroscopic analysis depicted the physicochemical compatibility, powdered x-ray diffraction (PXRD) analysis predicted the crystalline nature of pure drug and its transition into amorphous form within formulation. The differential scanning calorimetry (DSC) demonstrated the thermal stability of the formulation. The in vitro drug release study using dialysis membrane displayed the enhanced dissolution of diacerein due to the presence of hydrophilic carrier (Maltodextrin) followed by sustained drug release due to the presence of lipid mixture (lecithin and cholesterol). Ex vivo permeation studies depicted 3.50±0.27 and 3.21±0.22 folds enhanced flux of liposomal gels as compared to control. The acute oral toxicity study showed safety and biocompatibility of the system as no histopathological changes in vital organs were observed. These results suggests that proliposomes and liposomal derived gel are promising candidates for the solubility and permeability enhancement of diacerein in the management of osteoarthritis. |
format | Online Article Text |
id | pubmed-8525764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-85257642021-10-20 Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein Shah, Hassan Madni, Asadullah Rahim, Muhammad Abdur Jan, Nasrullah Khan, Arshad Khan, Safiullah Jabar, Abdul Ali, Ahsan PLoS One Research Article The present study is associated with the development of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein. Proliposomes were developed by thin film hydration method and converted into the liposomal derived gel using carbopol-934 as a gelling agent. Formulations with varied lecithin to cholesterol ratios were investigated to obtain the optimal size, entrapment efficiency, and enhanced in vitro dissolution. Dynamic light scattering analysis revealed the particle size and zeta potential in the range of 385.1±2.45–762.8±2.05 nm and -22.4±0.55–31.2±0.96mV respectively. Fourier transform infrared (FTIR) spectroscopic analysis depicted the physicochemical compatibility, powdered x-ray diffraction (PXRD) analysis predicted the crystalline nature of pure drug and its transition into amorphous form within formulation. The differential scanning calorimetry (DSC) demonstrated the thermal stability of the formulation. The in vitro drug release study using dialysis membrane displayed the enhanced dissolution of diacerein due to the presence of hydrophilic carrier (Maltodextrin) followed by sustained drug release due to the presence of lipid mixture (lecithin and cholesterol). Ex vivo permeation studies depicted 3.50±0.27 and 3.21±0.22 folds enhanced flux of liposomal gels as compared to control. The acute oral toxicity study showed safety and biocompatibility of the system as no histopathological changes in vital organs were observed. These results suggests that proliposomes and liposomal derived gel are promising candidates for the solubility and permeability enhancement of diacerein in the management of osteoarthritis. Public Library of Science 2021-10-19 /pmc/articles/PMC8525764/ /pubmed/34665836 http://dx.doi.org/10.1371/journal.pone.0258141 Text en © 2021 Shah et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Shah, Hassan Madni, Asadullah Rahim, Muhammad Abdur Jan, Nasrullah Khan, Arshad Khan, Safiullah Jabar, Abdul Ali, Ahsan Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein |
title | Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein |
title_full | Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein |
title_fullStr | Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein |
title_full_unstemmed | Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein |
title_short | Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein |
title_sort | fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525764/ https://www.ncbi.nlm.nih.gov/pubmed/34665836 http://dx.doi.org/10.1371/journal.pone.0258141 |
work_keys_str_mv | AT shahhassan fabricationinvitroandexvivoevaluationofproliposomesandliposomalderivedgelforenhancedsolubilityandpermeabilityofdiacerein AT madniasadullah fabricationinvitroandexvivoevaluationofproliposomesandliposomalderivedgelforenhancedsolubilityandpermeabilityofdiacerein AT rahimmuhammadabdur fabricationinvitroandexvivoevaluationofproliposomesandliposomalderivedgelforenhancedsolubilityandpermeabilityofdiacerein AT jannasrullah fabricationinvitroandexvivoevaluationofproliposomesandliposomalderivedgelforenhancedsolubilityandpermeabilityofdiacerein AT khanarshad fabricationinvitroandexvivoevaluationofproliposomesandliposomalderivedgelforenhancedsolubilityandpermeabilityofdiacerein AT khansafiullah fabricationinvitroandexvivoevaluationofproliposomesandliposomalderivedgelforenhancedsolubilityandpermeabilityofdiacerein AT jabarabdul fabricationinvitroandexvivoevaluationofproliposomesandliposomalderivedgelforenhancedsolubilityandpermeabilityofdiacerein AT aliahsan fabricationinvitroandexvivoevaluationofproliposomesandliposomalderivedgelforenhancedsolubilityandpermeabilityofdiacerein |