Cargando…
Deep Multimodal Learning From MRI and Clinical Data for Early Prediction of Neurodevelopmental Deficits in Very Preterm Infants
The prevalence of disabled survivors of prematurity has increased dramatically in the past 3 decades. These survivors, especially, very preterm infants (VPIs), born ≤ 32 weeks gestational age, are at high risk for neurodevelopmental impairments. Early and clinically effective personalized prediction...
Autores principales: | He, Lili, Li, Hailong, Chen, Ming, Wang, Jinghua, Altaye, Mekibib, Dillman, Jonathan R., Parikh, Nehal A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525883/ https://www.ncbi.nlm.nih.gov/pubmed/34675773 http://dx.doi.org/10.3389/fnins.2021.753033 |
Ejemplares similares
-
Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework
por: He, Lili, et al.
Publicado: (2018) -
Early Prediction of Cognitive Deficit in Very Preterm Infants Using Brain Structural Connectome With Transfer Learning Enhanced Deep Convolutional Neural Networks
por: Chen, Ming, et al.
Publicado: (2020) -
A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants
por: He, Lili, et al.
Publicado: (2020) -
A novel Ontology-guided Attribute Partitioning ensemble learning model for early prediction of cognitive deficits using quantitative Structural MRI in very preterm infants
por: Li, Zhiyuan, et al.
Publicado: (2022) -
Retinopathy of Prematurity and Bronchopulmonary Dysplasia are Independent Antecedents of Cortical Maturational Abnormalities in Very Preterm Infants
por: Kline, Julia E., et al.
Publicado: (2019)