Cargando…
Chemiluminescence Detection in the Study of Free-Radical Reactions. Part 1
The present review, consisting of two parts, considers the application of the chemiluminescence detection method in evaluating free radical reactions in biological model systems. The first part presents a classification of experimental biological model systems. Evidence favoring the use of chemilumi...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
A.I. Gordeyev
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526183/ https://www.ncbi.nlm.nih.gov/pubmed/34707900 http://dx.doi.org/10.32607/actanaturae.10912 |
Sumario: | The present review, consisting of two parts, considers the application of the chemiluminescence detection method in evaluating free radical reactions in biological model systems. The first part presents a classification of experimental biological model systems. Evidence favoring the use of chemiluminescence detection in the study of free radical reactions, along with similar methods of registering electromagnetic radiation as electron paramagnetic resonance, spectrophotometry, detection of infrared radiation (IR spectrometry), and chemical methods for assessing the end products of free radical reactions, is shown. Chemiluminescence accompanying free radical reactions involving lipids has been the extensively studied reaction. These reactions are one of the key causes of cell death by either apoptosis (activation of the cytochrome c complex with cardiolipin) or ferroptosis (induced by free ferrous ions). The concept of chemiluminescence quantum yield is also discussed in this article. The second part, which is to be published in the next issue, analyzes the application of chemiluminescence detection using luminescent additives that are called activators, a.k.a. chemiluminescence enhancers, and enhance the emission through the triplet–singlet transfer of electron excitation energy from radical reaction products, followed by light emission with a high quantum yield. |
---|