Cargando…
Unsupervised learning predicts human perception and misperception of gloss
Reflectance, lighting and geometry combine in complex ways to create images. How do we disentangle these to perceive individual properties, such as surface glossiness? We suggest that brains disentangle properties by learning to model statistical structure in proximal images. To test this hypothesis...
Autores principales: | Storrs, Katherine R., Anderson, Barton L., Fleming, Roland W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526360/ https://www.ncbi.nlm.nih.gov/pubmed/33958744 http://dx.doi.org/10.1038/s41562-021-01097-6 |
Ejemplares similares
-
Color and gloss constancy under diverse lighting environments
por: Morimoto, Takuma, et al.
Publicado: (2023) -
Gloss perception: Searching for a deep neural network that behaves like humans
por: Prokott, Konrad Eugen, et al.
Publicado: (2021) -
The perception and misperception of optical defocus, shading, and shape
por: Mooney, Scott WJ, et al.
Publicado: (2019) -
‘Proto-rivalry’: how the binocular brain identifies gloss
por: Muryy, Alexander A., et al.
Publicado: (2016) -
Learning to see stuff
por: Fleming, Roland W, et al.
Publicado: (2019)