Cargando…

Fast ion transport for synthesis and stabilization of β-Zn(4)Sb(3)

Mobile ion-enabled phenomena make β-Zn(4)Sb(3) a promising material in terms of the re-entry phase instability behavior, mixed electronic ionic conduction, and thermoelectric performance. Here, we utilize the fast Zn(2+) migration under a sawtooth waveform electric field and a dynamical growth of 3-...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Dongwang, Su, Xianli, He, Jian, Yan, Yonggao, Li, Jun, Bai, Hui, Luo, Tingting, Liu, Yamei, Luo, Hao, Yu, Yimeng, Wu, Jinsong, Zhang, Qingjie, Uher, Ctirad, Tang, Xinfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526605/
https://www.ncbi.nlm.nih.gov/pubmed/34667162
http://dx.doi.org/10.1038/s41467-021-26265-0
Descripción
Sumario:Mobile ion-enabled phenomena make β-Zn(4)Sb(3) a promising material in terms of the re-entry phase instability behavior, mixed electronic ionic conduction, and thermoelectric performance. Here, we utilize the fast Zn(2+) migration under a sawtooth waveform electric field and a dynamical growth of 3-dimensional ionic conduction network to achieve ultra-fast synthesis of β-Zn(4)Sb(3). Moreover, the interplay between the mobile ions, electric field, and temperature field gives rise to exquisite core-shell crystalline-amorphous microstructures that self-adaptively stabilize β-Zn(4)Sb(3). Doping Cd or Ge on the Zn site as steric hindrance further stabilizes β-Zn(4)Sb(3) by restricting long-range Zn(2+) migration and extends the operation temperature range of high thermoelectric performance. These results provide insight into the development of mixed-conduction thermoelectric materials, batteries, and other functional materials.