Cargando…
Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records
One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two scalable uncertainty estimation methods. However, dee...
Autores principales: | Li, Yikuan, Rao, Shishir, Hassaine, Abdelaali, Ramakrishnan, Rema, Canoy, Dexter, Salimi-Khorshidi, Gholamreza, Mamouei, Mohammad, Lukasiewicz, Thomas, Rahimi, Kazem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526832/ https://www.ncbi.nlm.nih.gov/pubmed/34667200 http://dx.doi.org/10.1038/s41598-021-00144-6 |
Ejemplares similares
-
Publisher Correction: Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records
por: Li, Yikuan, et al.
Publicado: (2021) -
Hi-BEHRT: Hierarchical Transformer-Based Model for Accurate Prediction of Clinical Events Using Multimodal Longitudinal Electronic Health Records
por: Li, Yikuan, et al.
Publicado: (2023) -
Validation of risk prediction models applied to longitudinal electronic health record data for the prediction of major cardiovascular events in the presence of data shifts
por: Li, Yikuan, et al.
Publicado: (2022) -
BEHRT: Transformer for Electronic Health Records
por: Li, Yikuan, et al.
Publicado: (2020) -
Systolic Blood Pressure and Cardiovascular Risk in Patients With Diabetes: A Prospective Cohort Study
por: Rao, Shishir, et al.
Publicado: (2022)