Cargando…

Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas

PURPOSE: Coronavirus Disease 2019 (COVID-19) severity and Diabetes mellitus affect each other bidirectionally. However, the cause of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection on the incidence of diabetes is unclear. In the SARS-CoV-2-infected cells, host microRNAs (miRNAs...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhavya, Pathak, E., Mishra, R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527307/
https://www.ncbi.nlm.nih.gov/pubmed/34669152
http://dx.doi.org/10.1007/s40618-021-01693-3
_version_ 1784586049140293632
author Bhavya
Pathak, E.
Mishra, R.
author_facet Bhavya
Pathak, E.
Mishra, R.
author_sort Bhavya
collection PubMed
description PURPOSE: Coronavirus Disease 2019 (COVID-19) severity and Diabetes mellitus affect each other bidirectionally. However, the cause of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection on the incidence of diabetes is unclear. In the SARS-CoV-2-infected cells, host microRNAs (miRNAs) may target the native gene transcripts as well as the viral genomic and subgenomic RNAs. Here, we investigated the role of miRNAs in linking Diabetes to SARS-CoV-2 infection in the human pancreas. METHODS: Differential gene expression and disease enrichment analyses were performed on an RNA-Seq dataset of human embryonic stem cell-derived (hESC) mock-infected and SARS-CoV-2-infected pancreatic organoids to obtain the dysregulated Diabetes-associated genes. The miRNA target prediction for the Diabetes-associated gene transcripts and the SARS-CoV-2 RNAs has been made to determine the common miRNAs targeting them. Minimum Free Energy (MFE) analysis was done to identify the miRNAs, preferably targeting SARS-CoV-2 RNAs over the Diabetes-associated gene transcripts. RESULTS: The gene expression and disease enrichment analyses of the RNA-Seq data have revealed five biomarker genes, i.e., CP, SOCS3, AGT, PSMB8 and CFB that are associated with Diabetes and get significantly upregulated in the pancreas following SARS-CoV-2-infection. Four miRNAs, i.e., hsa-miR-298, hsa-miR-3925-5p, hsa-miR-4691-3p and hsa-miR-5196-5p, showed preferential targeting of the SARS-CoV-2 genome over the cell’s Diabetes-associated messenger RNAs (mRNAs) in the human pancreas. CONCLUSION: Our study proposes that the differential targeting of the Diabetes-associated host genes by the miRNAs may lead to diabetic complications or new-onset Diabetes that can worsen the condition of COVID-19 patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40618-021-01693-3.
format Online
Article
Text
id pubmed-8527307
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-85273072021-10-20 Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas Bhavya Pathak, E. Mishra, R. J Endocrinol Invest Original Article PURPOSE: Coronavirus Disease 2019 (COVID-19) severity and Diabetes mellitus affect each other bidirectionally. However, the cause of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection on the incidence of diabetes is unclear. In the SARS-CoV-2-infected cells, host microRNAs (miRNAs) may target the native gene transcripts as well as the viral genomic and subgenomic RNAs. Here, we investigated the role of miRNAs in linking Diabetes to SARS-CoV-2 infection in the human pancreas. METHODS: Differential gene expression and disease enrichment analyses were performed on an RNA-Seq dataset of human embryonic stem cell-derived (hESC) mock-infected and SARS-CoV-2-infected pancreatic organoids to obtain the dysregulated Diabetes-associated genes. The miRNA target prediction for the Diabetes-associated gene transcripts and the SARS-CoV-2 RNAs has been made to determine the common miRNAs targeting them. Minimum Free Energy (MFE) analysis was done to identify the miRNAs, preferably targeting SARS-CoV-2 RNAs over the Diabetes-associated gene transcripts. RESULTS: The gene expression and disease enrichment analyses of the RNA-Seq data have revealed five biomarker genes, i.e., CP, SOCS3, AGT, PSMB8 and CFB that are associated with Diabetes and get significantly upregulated in the pancreas following SARS-CoV-2-infection. Four miRNAs, i.e., hsa-miR-298, hsa-miR-3925-5p, hsa-miR-4691-3p and hsa-miR-5196-5p, showed preferential targeting of the SARS-CoV-2 genome over the cell’s Diabetes-associated messenger RNAs (mRNAs) in the human pancreas. CONCLUSION: Our study proposes that the differential targeting of the Diabetes-associated host genes by the miRNAs may lead to diabetic complications or new-onset Diabetes that can worsen the condition of COVID-19 patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40618-021-01693-3. Springer International Publishing 2021-10-20 2022 /pmc/articles/PMC8527307/ /pubmed/34669152 http://dx.doi.org/10.1007/s40618-021-01693-3 Text en © Italian Society of Endocrinology (SIE) 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Original Article
Bhavya
Pathak, E.
Mishra, R.
Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas
title Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas
title_full Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas
title_fullStr Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas
title_full_unstemmed Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas
title_short Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas
title_sort deciphering the link between diabetes mellitus and sars-cov-2 infection through differential targeting of micrornas in the human pancreas
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527307/
https://www.ncbi.nlm.nih.gov/pubmed/34669152
http://dx.doi.org/10.1007/s40618-021-01693-3
work_keys_str_mv AT bhavya decipheringthelinkbetweendiabetesmellitusandsarscov2infectionthroughdifferentialtargetingofmicrornasinthehumanpancreas
AT pathake decipheringthelinkbetweendiabetesmellitusandsarscov2infectionthroughdifferentialtargetingofmicrornasinthehumanpancreas
AT mishrar decipheringthelinkbetweendiabetesmellitusandsarscov2infectionthroughdifferentialtargetingofmicrornasinthehumanpancreas