Cargando…
Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review
OBJECTIVE: To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties. DESIGN: Systematic review. DATA SOURCES: PubMed from 1 January 2018 to 31 December 2019. ELIGIBILITY CRITERIA: Articles reporting on the develop...
Autores principales: | Andaur Navarro, Constanza L, Damen, Johanna A A, Takada, Toshihiko, Nijman, Steven W J, Dhiman, Paula, Ma, Jie, Collins, Gary S, Bajpai, Ram, Riley, Richard D, Moons, Karel G M, Hooft, Lotty |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527348/ https://www.ncbi.nlm.nih.gov/pubmed/34670780 http://dx.doi.org/10.1136/bmj.n2281 |
Ejemplares similares
-
Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review
por: Andaur Navarro, Constanza L., et al.
Publicado: (2022) -
Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques
por: Andaur Navarro, Constanza L, et al.
Publicado: (2020) -
Risk of bias of prognostic models developed using machine learning: a systematic review in oncology
por: Dhiman, Paula, et al.
Publicado: (2022) -
Reporting of prognostic clinical prediction models based on machine learning methods in oncology needs to be improved
por: Dhiman, Paula, et al.
Publicado: (2021) -
Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review
por: Dhiman, Paula, et al.
Publicado: (2022)