Cargando…
Detecting and grading prostate cancer in radical prostatectomy specimens through deep learning techniques
OBJECTIVES: This study aims to evaluate the ability of deep learning algorithms to detect and grade prostate cancer (PCa) in radical prostatectomy specimens. METHODS: We selected 12 whole-slide images of radical prostatectomy specimens. These images were divided into patches, and then, analyzed and...
Autores principales: | Melo, Petronio Augusto de Souza, Estivallet, Carmen Liane Neubarth, Srougi, Miguel, Nahas, William Carlos, Leite, Katia Ramos Moreira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Faculdade de Medicina / USP
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527555/ https://www.ncbi.nlm.nih.gov/pubmed/34730614 http://dx.doi.org/10.6061/clinics/2021/e3198 |
Ejemplares similares
-
The value of artificial intelligence for detection and grading of prostate cancer in human prostatectomy specimens: a validation study
por: Kudo, Maíra Suzuka, et al.
Publicado: (2022) -
The transverse and vertical distribution of prostate cancer in biopsy and radical prostatectomy specimens
por: Mai, Zhipeng, et al.
Publicado: (2018) -
MRI-Derived Restriction Spectrum Imaging Cellularity Index is Associated with High Grade Prostate Cancer on Radical Prostatectomy Specimens
por: Liss, Michael A., et al.
Publicado: (2015) -
Intraductal carcinoma has a minimal impact on Grade Group assignment in prostate cancer biopsy and radical prostatectomy specimens
por: Rijstenberg, L. Lucia, et al.
Publicado: (2020) -
Clinical Predictors of Grade Group Upgrading for Radical Prostatectomy Specimens Compared to Those of Preoperative Needle Biopsy Specimens
por: Tomioka, Masayuki, et al.
Publicado: (2022)