Cargando…
Improved detection of disease-associated gut microbes using 16S sequence-based biomarkers
BACKGROUND: Sequencing partial 16S rRNA genes is a cost effective method for quantifying the microbial composition of an environment, such as the human gut. However, downstream analysis relies on binning reads into microbial groups by either considering each unique sequence as a different microbe, q...
Autores principales: | Chrisman, Brianna S., Paskov, Kelley M., Stockham, Nate, Jung, Jae-Yoon, Varma, Maya, Washington, Peter Y., Tataru, Christine, Iwai, Shoko, DeSantis, Todd Z., David, Maude, Wall, Dennis P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527694/ https://www.ncbi.nlm.nih.gov/pubmed/34666677 http://dx.doi.org/10.1186/s12859-021-04427-7 |
Ejemplares similares
-
Game theoretic centrality: a novel approach to prioritize disease candidate genes by combining biological networks with the Shapley value
por: Sun, Min Woo, et al.
Publicado: (2020) -
Estimating sequencing error rates using families
por: Paskov, Kelley, et al.
Publicado: (2021) -
Outgroup Machine Learning Approach Identifies Single Nucleotide Variants in Noncoding DNA Associated with Autism Spectrum Disorder
por: Varma, Maya, et al.
Publicado: (2019) -
A maximum flow-based network approach for identification of stable noncoding biomarkers associated with the multigenic neurological condition, autism
por: Varma, Maya, et al.
Publicado: (2021) -
The human “contaminome”: bacterial, viral, and computational contamination in whole genome sequences from 1000 families
por: Chrisman, Brianna, et al.
Publicado: (2022)