Cargando…
Wheat physiology predictor: predicting physiological traits in wheat from hyperspectral reflectance measurements using deep learning
BACKGROUND: The need for rapid in-field measurement of key traits contributing to yield over many thousands of genotypes is a major roadblock in crop breeding. Recently, leaf hyperspectral reflectance data has been used to train machine learning models using partial least squares regression (PLSR) t...
Autores principales: | Furbank, Robert T., Silva-Perez, Viridiana, Evans, John R., Condon, Anthony G., Estavillo, Gonzalo M., He, Wennan, Newman, Saul, Poiré, Richard, Hall, Ashley, He, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527791/ https://www.ncbi.nlm.nih.gov/pubmed/34666801 http://dx.doi.org/10.1186/s13007-021-00806-6 |
Ejemplares similares
-
Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat
por: Silva-Perez, Viridiana, et al.
Publicado: (2018) -
Hyperspectral reflectance and agro-physiological traits for field identification of salt-tolerant wheat genotypes using the genotype by yield*trait biplot technique
por: Elfanah, Ahmed M. S., et al.
Publicado: (2023) -
Photons to food: genetic improvement of cereal crop photosynthesis
por: Furbank, Robert T, et al.
Publicado: (2020) -
Genetic variation for photosynthetic capacity and efficiency in spring wheat
por: Silva-Pérez, Viridiana, et al.
Publicado: (2020) -
High-throughput phenotyping of seminal root traits in wheat
por: Richard, Cecile AI, et al.
Publicado: (2015)