Cargando…
Differential expression analysis using a model-based gene clustering algorithm for RNA-seq data
BACKGROUND: RNA-seq is a tool for measuring gene expression and is commonly used to identify differentially expressed genes (DEGs). Gene clustering is used to classify DEGs with similar expression patterns for the subsequent analyses of data from experiments such as time-courses or multi-group compa...
Autores principales: | Osabe, Takayuki, Shimizu, Kentaro, Kadota, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527798/ https://www.ncbi.nlm.nih.gov/pubmed/34670485 http://dx.doi.org/10.1186/s12859-021-04438-4 |
Ejemplares similares
-
Accurate Classification of Differential Expression Patterns in a
Bayesian Framework With Robust Normalization for Multi-Group RNA-Seq Count
Data
por: Osabe, Takayuki, et al.
Publicado: (2019) -
Evaluation of methods for differential expression analysis on multi-group RNA-seq count data
por: Tang, Min, et al.
Publicado: (2015) -
TCC-GUI: a Shiny-based application for differential expression analysis of RNA-Seq count data
por: Su, Wei, et al.
Publicado: (2019) -
Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity
por: Kadota, Koji, et al.
Publicado: (2009) -
Evaluating methods for ranking differentially expressed genes applied to microArray quality control data
por: Kadota, Koji, et al.
Publicado: (2011)