Cargando…

(1)H-NMR-based metabolic profiling identifies non-invasive diagnostic and predictive urinary fingerprints in 5q spinal muscular atrophy

BACKGROUND: 5q spinal muscular atrophy (SMA) is a disabling and life-limiting neuromuscular disease. In recent years, novel therapies have shown to improve clinical outcomes. Yet, the absence of reliable biomarkers renders clinical assessment and prognosis of possibly already affected newborns with...

Descripción completa

Detalles Bibliográficos
Autores principales: Saffari, Afshin, Cannet, Claire, Blaschek, Astrid, Hahn, Andreas, Hoffmann, Georg F., Johannsen, Jessika, Kirsten, Romy, Kockaya, Musa, Kölker, Stefan, Müller-Felber, Wolfgang, Roos, Andreas, Schäfer, Hartmut, Schara, Ulrike, Spraul, Manfred, Trefz, Friedrich K., Vill, Katharina, Wick, Wolfgang, Weiler, Markus, Okun, Jürgen G., Ziegler, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527822/
https://www.ncbi.nlm.nih.gov/pubmed/34670613
http://dx.doi.org/10.1186/s13023-021-02075-x
_version_ 1784586147847995392
author Saffari, Afshin
Cannet, Claire
Blaschek, Astrid
Hahn, Andreas
Hoffmann, Georg F.
Johannsen, Jessika
Kirsten, Romy
Kockaya, Musa
Kölker, Stefan
Müller-Felber, Wolfgang
Roos, Andreas
Schäfer, Hartmut
Schara, Ulrike
Spraul, Manfred
Trefz, Friedrich K.
Vill, Katharina
Wick, Wolfgang
Weiler, Markus
Okun, Jürgen G.
Ziegler, Andreas
author_facet Saffari, Afshin
Cannet, Claire
Blaschek, Astrid
Hahn, Andreas
Hoffmann, Georg F.
Johannsen, Jessika
Kirsten, Romy
Kockaya, Musa
Kölker, Stefan
Müller-Felber, Wolfgang
Roos, Andreas
Schäfer, Hartmut
Schara, Ulrike
Spraul, Manfred
Trefz, Friedrich K.
Vill, Katharina
Wick, Wolfgang
Weiler, Markus
Okun, Jürgen G.
Ziegler, Andreas
author_sort Saffari, Afshin
collection PubMed
description BACKGROUND: 5q spinal muscular atrophy (SMA) is a disabling and life-limiting neuromuscular disease. In recent years, novel therapies have shown to improve clinical outcomes. Yet, the absence of reliable biomarkers renders clinical assessment and prognosis of possibly already affected newborns with a positive newborn screening result for SMA imprecise and difficult. Therapeutic decisions and stratification of individualized therapies remain challenging, especially in symptomatic children. The aim of this proof-of-concept and feasibility study was to explore the value of (1)H-nuclear magnetic resonance (NMR)-based metabolic profiling in identifying non-invasive diagnostic and prognostic urinary fingerprints in children and adolescents with SMA. RESULTS: Urine samples were collected from 29 treatment-naïve SMA patients (5 pre-symptomatic, 9 SMA 1, 8 SMA 2, 7 SMA 3), 18 patients with Duchenne muscular dystrophy (DMD) and 444 healthy controls. Using machine-learning algorithms, we propose a set of prediction models built on urinary fingerprints that showed potential diagnostic value in discriminating SMA patients from controls and DMD, as well as predictive properties in separating between SMA types, allowing predictions about phenotypic severity. Interestingly, preliminary results of the prediction models suggest additional value in determining biochemical onset of disease in pre-symptomatic infants with SMA identified by genetic newborn screening and furthermore as potential therapeutic monitoring tool. CONCLUSIONS: This study provides preliminary evidence for the use of (1)H-NMR-based urinary metabolic profiling as diagnostic and prognostic biomarker in spinal muscular atrophy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13023-021-02075-x.
format Online
Article
Text
id pubmed-8527822
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-85278222021-10-25 (1)H-NMR-based metabolic profiling identifies non-invasive diagnostic and predictive urinary fingerprints in 5q spinal muscular atrophy Saffari, Afshin Cannet, Claire Blaschek, Astrid Hahn, Andreas Hoffmann, Georg F. Johannsen, Jessika Kirsten, Romy Kockaya, Musa Kölker, Stefan Müller-Felber, Wolfgang Roos, Andreas Schäfer, Hartmut Schara, Ulrike Spraul, Manfred Trefz, Friedrich K. Vill, Katharina Wick, Wolfgang Weiler, Markus Okun, Jürgen G. Ziegler, Andreas Orphanet J Rare Dis Research BACKGROUND: 5q spinal muscular atrophy (SMA) is a disabling and life-limiting neuromuscular disease. In recent years, novel therapies have shown to improve clinical outcomes. Yet, the absence of reliable biomarkers renders clinical assessment and prognosis of possibly already affected newborns with a positive newborn screening result for SMA imprecise and difficult. Therapeutic decisions and stratification of individualized therapies remain challenging, especially in symptomatic children. The aim of this proof-of-concept and feasibility study was to explore the value of (1)H-nuclear magnetic resonance (NMR)-based metabolic profiling in identifying non-invasive diagnostic and prognostic urinary fingerprints in children and adolescents with SMA. RESULTS: Urine samples were collected from 29 treatment-naïve SMA patients (5 pre-symptomatic, 9 SMA 1, 8 SMA 2, 7 SMA 3), 18 patients with Duchenne muscular dystrophy (DMD) and 444 healthy controls. Using machine-learning algorithms, we propose a set of prediction models built on urinary fingerprints that showed potential diagnostic value in discriminating SMA patients from controls and DMD, as well as predictive properties in separating between SMA types, allowing predictions about phenotypic severity. Interestingly, preliminary results of the prediction models suggest additional value in determining biochemical onset of disease in pre-symptomatic infants with SMA identified by genetic newborn screening and furthermore as potential therapeutic monitoring tool. CONCLUSIONS: This study provides preliminary evidence for the use of (1)H-NMR-based urinary metabolic profiling as diagnostic and prognostic biomarker in spinal muscular atrophy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13023-021-02075-x. BioMed Central 2021-10-20 /pmc/articles/PMC8527822/ /pubmed/34670613 http://dx.doi.org/10.1186/s13023-021-02075-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Saffari, Afshin
Cannet, Claire
Blaschek, Astrid
Hahn, Andreas
Hoffmann, Georg F.
Johannsen, Jessika
Kirsten, Romy
Kockaya, Musa
Kölker, Stefan
Müller-Felber, Wolfgang
Roos, Andreas
Schäfer, Hartmut
Schara, Ulrike
Spraul, Manfred
Trefz, Friedrich K.
Vill, Katharina
Wick, Wolfgang
Weiler, Markus
Okun, Jürgen G.
Ziegler, Andreas
(1)H-NMR-based metabolic profiling identifies non-invasive diagnostic and predictive urinary fingerprints in 5q spinal muscular atrophy
title (1)H-NMR-based metabolic profiling identifies non-invasive diagnostic and predictive urinary fingerprints in 5q spinal muscular atrophy
title_full (1)H-NMR-based metabolic profiling identifies non-invasive diagnostic and predictive urinary fingerprints in 5q spinal muscular atrophy
title_fullStr (1)H-NMR-based metabolic profiling identifies non-invasive diagnostic and predictive urinary fingerprints in 5q spinal muscular atrophy
title_full_unstemmed (1)H-NMR-based metabolic profiling identifies non-invasive diagnostic and predictive urinary fingerprints in 5q spinal muscular atrophy
title_short (1)H-NMR-based metabolic profiling identifies non-invasive diagnostic and predictive urinary fingerprints in 5q spinal muscular atrophy
title_sort (1)h-nmr-based metabolic profiling identifies non-invasive diagnostic and predictive urinary fingerprints in 5q spinal muscular atrophy
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527822/
https://www.ncbi.nlm.nih.gov/pubmed/34670613
http://dx.doi.org/10.1186/s13023-021-02075-x
work_keys_str_mv AT saffariafshin 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT cannetclaire 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT blaschekastrid 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT hahnandreas 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT hoffmanngeorgf 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT johannsenjessika 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT kirstenromy 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT kockayamusa 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT kolkerstefan 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT mullerfelberwolfgang 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT roosandreas 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT schaferhartmut 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT scharaulrike 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT spraulmanfred 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT trefzfriedrichk 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT villkatharina 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT wickwolfgang 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT weilermarkus 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT okunjurgeng 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy
AT zieglerandreas 1hnmrbasedmetabolicprofilingidentifiesnoninvasivediagnosticandpredictiveurinaryfingerprintsin5qspinalmuscularatrophy