Cargando…
Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning
PURPOSE: To apply a deep learning algorithm for automated, objective, and comprehensive quantification of OCT scans to a large real-world dataset of eyes with neovascular age-related macular degeneration (AMD) and make the raw segmentation output data openly available for further research. DESIGN: R...
Autores principales: | Moraes, Gabriella, Fu, Dun Jack, Wilson, Marc, Khalid, Hagar, Wagner, Siegfried K., Korot, Edward, Ferraz, Daniel, Faes, Livia, Kelly, Christopher J., Spitz, Terry, Patel, Praveen J., Balaskas, Konstantinos, Keenan, Tiarnan D.L., Keane, Pearse A., Chopra, Reena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528155/ https://www.ncbi.nlm.nih.gov/pubmed/32980396 http://dx.doi.org/10.1016/j.ophtha.2020.09.025 |
Ejemplares similares
-
Evaluating an automated machine learning model that predicts visual acuity outcomes in patients with neovascular age-related macular degeneration
por: Abbas, Abdallah, et al.
Publicado: (2022) -
Will AI Replace Ophthalmologists?
por: Korot, Edward, et al.
Publicado: (2020) -
Insights into Systemic Disease through Retinal Imaging-Based Oculomics
por: Wagner, Siegfried K., et al.
Publicado: (2020) -
One- and two-year visual outcomes from the Moorfields age-related macular degeneration database: a retrospective cohort study and an open science resource
por: Fasler, Katrin, et al.
Publicado: (2019) -
Re-evaluating diabetic papillopathy using optical coherence tomography and inner retinal sublayer analysis
por: Huemer, Josef, et al.
Publicado: (2021)