Cargando…
AI delivers Michaelis constants as fuel for genome-scale metabolic models
Michaelis constants (K(m)) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict K(m) on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism.
Autores principales: | Antolin, Albert A., Cascante, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528274/ https://www.ncbi.nlm.nih.gov/pubmed/34669692 http://dx.doi.org/10.1371/journal.pbio.3001415 |
Ejemplares similares
-
Deep learning allows genome-scale prediction of Michaelis constants from structural features
por: Kroll, Alexander, et al.
Publicado: (2021) -
Microarray Analysis: Genome-scale hypothesis scanning
por: Gibson, Greg
Publicado: (2003) -
Henri-Michaelis-Menten kinetics of reversible enzymic reactions, and the determination of rate constants from kinetic constants
por: Barnsley, Eric A.
Publicado: (2022) -
MLAGO: machine learning-aided global optimization for Michaelis constant estimation of kinetic modeling
por: Maeda, Kazuhiro, et al.
Publicado: (2022) -
Detecting Adaptation with Genome-Scale Molecular Evolutionary Analysis: An Educational Primer for Use with “RNA Interference Pathways Display High Rates of Adaptive Protein Evolution in Multiple Invertebrates”
por: Lazzaro, Brian P.
Publicado: (2018)