Cargando…
Extended graphical lasso for multiple interaction networks for high dimensional omics data
There has been a spate of interest in association networks in biological and medical research, for example, genetic interaction networks. In this paper, we propose a novel method, the extended joint hub graphical lasso (EDOHA), to estimate multiple related interaction networks for high dimensional o...
Autores principales: | Xu, Yang, Jiang, Hongmei, Jiang, Wenxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528283/ https://www.ncbi.nlm.nih.gov/pubmed/34669695 http://dx.doi.org/10.1371/journal.pcbi.1008794 |
Ejemplares similares
-
Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks
por: Wu, Nuosi, et al.
Publicado: (2019) -
De-Biased Graphical Lasso for High-Frequency Data
por: Koike, Yuta
Publicado: (2020) -
Tailored graphical lasso for data integration in gene network reconstruction
por: Lingjærde, Camilla, et al.
Publicado: (2021) -
An Augmented High-Dimensional Graphical Lasso Method to Incorporate Prior Biological Knowledge for Global Network Learning
por: Zhuang, Yonghua, et al.
Publicado: (2022) -
Analysis of Twitter data with the Bayesian fused graphical lasso
por: Aflakparast, Mehran, et al.
Publicado: (2020)