Cargando…
Performance evaluation in [(18)F]Florbetaben brain PET images classification using 3D Convolutional Neural Network
High accuracy has been reported in deep learning classification for amyloid brain scans, an important factor in Alzheimer’s disease diagnosis. However, the possibility of overfitting should be considered, as this model is fitted with sample data. Therefore, we created and evaluated an [(18)F]Florbet...
Autores principales: | Lee, Seung-Yeon, Kang, Hyeon, Jeong, Jong-Hun, Kang, Do-young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528306/ https://www.ncbi.nlm.nih.gov/pubmed/34669702 http://dx.doi.org/10.1371/journal.pone.0258214 |
Ejemplares similares
-
Alzheimer’s Disease Prediction Using Attention Mechanism with Dual-Phase (18)F-Florbetaben Images
por: Kang, Hyeon, et al.
Publicado: (2022) -
Amyloid PET imaging in multiple sclerosis: an (18)F-florbetaben study
por: Matías-Guiu, Jordi A., et al.
Publicado: (2015) -
(18)F-Florbetaben PET beta-amyloid binding expressed in Centiloids
por: Rowe, Christopher C., et al.
Publicado: (2017) -
Early detection of amyloid load using (18)F-florbetaben PET
por: Bullich, Santiago, et al.
Publicado: (2021) -
Assessment of brain beta-amyloid deposition in transgenic mouse models of Alzheimer’s disease with PET imaging agents (18)F-flutemetamol and (18)F-florbetaben
por: Son, Hye Joo, et al.
Publicado: (2018)