Cargando…
Topological representations of crystalline compounds for the machine-learning prediction of materials properties
Accurate theoretical predictions of desired properties of materials play an important role in materials research and development. Machine learning (ML) can accelerate the materials design by building a model from input data. For complex datasets, such as those of crystalline compounds, a vital issue...
Autores principales: | Jiang, Yi, Chen, Dong, Chen, Xin, Li, Tangyi, Wei, Guo-Wei, Pan, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528346/ https://www.ncbi.nlm.nih.gov/pubmed/34676106 http://dx.doi.org/10.1038/s41524-021-00493-w |
Ejemplares similares
-
Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening
por: Cang, Zixuan, et al.
Publicado: (2018) -
Crystalline metamaterials for topological properties at subwavelength scales
por: Yves, Simon, et al.
Publicado: (2017) -
Charting the complete elastic properties of inorganic crystalline compounds
por: de Jong, Maarten, et al.
Publicado: (2015) -
A representation-independent electronic charge density database for crystalline materials
por: Shen, Jimmy-Xuan, et al.
Publicado: (2022) -
Application of Machine Learning in Material Synthesis and Property Prediction
por: Huang, Guannan, et al.
Publicado: (2023)