Cargando…
Frederick Banting’s actual great idea: The role of fetal bovine islets in the discovery of insulin
Background: Frederick Banting approached Toronto physiology professor JJR Macleod with a way to prevent pancreatic trypsin from destroying the pancreas’ internal secretion. Banting proposed to induce exocrine atrophy by ligating canine pancreatic ducts and to use extracts of islet-rich residua to tr...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528409/ https://www.ncbi.nlm.nih.gov/pubmed/34499012 http://dx.doi.org/10.1080/19382014.2021.1963188 |
Sumario: | Background: Frederick Banting approached Toronto physiology professor JJR Macleod with a way to prevent pancreatic trypsin from destroying the pancreas’ internal secretion. Banting proposed to induce exocrine atrophy by ligating canine pancreatic ducts and to use extracts of islet-rich residua to treat pancreatectomized dogs. His next plan was to make extracts from fetal pancreas, which he had read was islet-rich and lacked exocrine tissue capable of making trypsin; this work has not been historically evaluated. Methods: Banting’s fetal calf pancreas story is told using primary and secondary historical sources and then critically examined using both historical and recent data on species phylogeny, islet ontogeny, fetal/neonatal islet culture/transplantation, etc. Results/Discussion: Only ruminants develop dual islets populations sequentially; fetal calf pancreata, at the gestational ages Banting used, possess numerous insulin-rich giant peri-lobular islets, which credibly explain the potency of his fetal calf insulin extract. Use of non-ruminant fetal pancreata would have failed. |
---|