Cargando…
Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks
Many synaptic plasticity rules found in natural circuits have not been incorporated into artificial neural networks (ANNs). We showed that incorporating a nonlocal feature of synaptic plasticity found in natural neural networks, whereby synaptic modification at output synapses of a neuron backpropag...
Autores principales: | Zhang, Tielin, Cheng, Xiang, Jia, Shuncheng, Poo, Mu-ming, Zeng, Yi, Xu, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528419/ https://www.ncbi.nlm.nih.gov/pubmed/34669481 http://dx.doi.org/10.1126/sciadv.abh0146 |
Ejemplares similares
-
A brain-inspired algorithm that mitigates catastrophic forgetting of artificial and spiking neural networks with low computational cost
por: Zhang, Tielin, et al.
Publicado: (2023) -
On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices
por: Kwon, Dongseok, et al.
Publicado: (2020) -
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022) -
Neuronal-Plasticity and Reward-Propagation Improved Recurrent Spiking Neural Networks
por: Jia, Shuncheng, et al.
Publicado: (2021)