Cargando…

Crab in amber reveals an early colonization of nonmarine environments during the Cretaceous

Amber fossils provide snapshots of the anatomy, biology, and ecology of extinct organisms that are otherwise inaccessible. The best-known fossils in amber are terrestrial arthropods—principally insects—whereas aquatic organisms are rarely represented. Here, we present the first record of true crabs...

Descripción completa

Detalles Bibliográficos
Autores principales: Luque, Javier, Xing, Lida, Briggs, Derek E. G., Clark, Elizabeth G., Duque, Alex, Hui, Junbo, Mai, Huijuan, McKellar, Ryan C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528423/
https://www.ncbi.nlm.nih.gov/pubmed/34669480
http://dx.doi.org/10.1126/sciadv.abj5689
Descripción
Sumario:Amber fossils provide snapshots of the anatomy, biology, and ecology of extinct organisms that are otherwise inaccessible. The best-known fossils in amber are terrestrial arthropods—principally insects—whereas aquatic organisms are rarely represented. Here, we present the first record of true crabs (Brachyura) in amber—from the Cretaceous of Myanmar [~100 to 99 million years (Ma)]. The new fossil preserves large compound eyes, delicate mouthparts, and even gills. This modern-looking crab is nested within crown Eubrachyura, or “higher” true crabs, which includes the majority of brachyuran species living today. The fossil appears to have been trapped in a brackish or freshwater setting near a coastal to fluvio-estuarine environment, bridging the gap between the predicted molecular divergence of nonmarine crabs (~130 Ma) and their younger fossil record (latest Cretaceous and Paleogene, ~75 to 50 Ma) while providing a reliable calibration point for molecular divergence time estimates for higher crown eubrachyurans.