Cargando…
In the Pursuit of Privacy: The Promises and Predicaments of Federated Learning in Healthcare
Artificial Intelligence and its subdomain, Machine Learning (ML), have shown the potential to make an unprecedented impact in healthcare. Federated Learning (FL) has been introduced to alleviate some of the limitations of ML, particularly the capability to train on larger datasets for improved perfo...
Autores principales: | Topaloglu, Mustafa Y., Morrell, Elisabeth M., Rajendran, Suraj, Topaloglu, Umit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528445/ https://www.ncbi.nlm.nih.gov/pubmed/34693280 http://dx.doi.org/10.3389/frai.2021.746497 |
Ejemplares similares
-
Federated Learning for Privacy-Aware Human Mobility Modeling
por: Ezequiel, Castro Elizondo Jose, et al.
Publicado: (2022) -
AI Technologies, Privacy, and Security
por: Elliott, David, et al.
Publicado: (2022) -
A framework for the prediction of earthquake using federated learning
por: Tehseen, Rabia, et al.
Publicado: (2021) -
A federated learning framework based on transfer learning and knowledge distillation for targeted advertising
por: Su, Caiyu, et al.
Publicado: (2023) -
A systematic review of security and privacy issues in the internet of medical things; the role of machine learning approaches
por: Hameed, Shilan S., et al.
Publicado: (2021)